分析 (Ⅰ)设抛物线标准方程为y2=2px,将(1,2)代入即可求得p的值,即可求得抛物线的标准方程;
(Ⅱ)将直线y=x-4代入抛物线方程,求得x1+x2,x1•x2,代入直线方程求得y1•y2,由${k_{OA}}•{k_{OB}}=\frac{{y{\;}_1•y{\;}_2}}{{{x_1}•{x_2}}}=\frac{-16}{16}=-1$,即可OA⊥OB.
解答 解:(Ⅰ)设抛物线标准方程为y2=2px…(2分)
∵抛物线过点(1,2),
∴4=2p,解得:p=2 …(4分)
∴y2=4x…(5分)
(Ⅱ)证明:由题意可知直线AB斜率是1,设A(x1,y1),B(x2,y2)
,$由\left\{\begin{array}{l}y=x-4\\{y^2}=4x\end{array}\right.消去y得{x^2}-12x+16=0$,
∴由韦达定理可知:x1+x2=12,x1•x2=16…(8分)
∴y1•y2=(x1-4)(x2-4)=x1•x2-4(x1+x2)+16=16-4×12+16=-16…(10分)
∴${k_{OA}}•{k_{OB}}=\frac{{y{\;}_1•y{\;}_2}}{{{x_1}•{x_2}}}=\frac{-16}{16}=-1$,
∴OA⊥OB …(12分)
点评 本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理及直线垂直的充要条件,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,3} | B. | {2,4,5,6,7,8} | C. | {5,6,7} | D. | {4,8} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com