精英家教网 > 高中数学 > 题目详情
如图,椭圆与过点 A(2,0)、B(0,1)的直线有且只有一个公共点T,且椭圆的离心率
(1)求椭圆的方程;
(2)设F1,F2分别为椭圆的左、右焦点,M为线段AF2的中点,求证:∠ATM=∠AF1T。
解:(1)过A、B的直线方程为
因为由题意得有唯一解
有唯一解
所以(ab≠0)
故a2+4b2-4=0
又因为,即
所以a2=4b2
从而得a2=2,
故所求的椭圆方程为
(2)由(1)得
所以
从而
解得x1=x2=1
所以
因为tan∠AF1T


因此∠ATM=∠AF1T。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设b>0,椭圆方程为
x2
2b2
+
y2
b2
=1
,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F1
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)过F1且与AB垂直的直线交椭圆于P,Q,若△PF2Q的面积是20
3
,求此时椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源:浙江省高考真题 题型:解答题

如图,椭圆与过A(2,0)、B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
(Ⅰ)求椭圆的方程;
(Ⅱ)设F1,F2分别为椭圆的左、右焦点,求证|AT|2=|AF1|·|AF2|。

查看答案和解析>>

同步练习册答案