精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,为正三角形,为线段的中点.

1)求证:平面

2)求证:平面

3)求三棱锥的体积.

【答案】1)证明见解析; 2)证明见解析; 3

【解析】

(1)取的中点,则,所以平面平面,由此可证平面;

(2),所以平面,所以,又,所以,所以.又中点,所以.所以平面

(3)由(2)知,所以平面,又为线段的中点.所以.

1)证明:

的中点,连接,则

,所以

,所以

所以平面平面

平面,所以平面

2)证明:连接,设

中点,

,知

,所以平面,所以

由已知得,所以,

,所以,所以

中点,所以

,所以平面

(3)解:由(2)知,所以平面

所以

所以

三棱锥的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱侧面

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=sinωx+φ)(ω0)的最小正周期为π,且关于中心对称,则下列结论正确的是(

A.f1)<f0)<f2B.f0)<f2)<f1

C.f2)<f0)<f1D.f2)<f1)<f0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足,数列数列,记.

1)写出一个满足,且数列

2)若,证明:数列是递增数列的充要条件是

3)对任意给定的整数,是否存在首项为0数列,使得?如果存在,写出一个满足条件的数列;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为正三角形,为线段的中点.

1)求证:平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国汉代数学家、天文学家,他在注解《周髀算经》时,介绍了勾股圆方图,亦称赵爽弦图,它被2002年国际数学家大会选定为会徽.“赵爽弦图是以弦为边长得到的正方形,该正方形由4个全等的直角三角形加上中间一个小正方形组成类比赵爽弦图,可类似地构造如图所示的图形它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形设DF2AF2,若在大等边三角形中随机取一点,则此点取自三个全等三角形(阴影部分)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面是正方形,平面,,的中点.

1)求证:平面平面;

2)求二面角的大小;

3)试判断所在直线与平面是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】割圆术是我国古代计算圆周率的一种方法.在公元年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求.当时刘微就是利用这种方法,把的近似值计算到之间,这是当时世界上对圆周率的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据割圆术,若用正二十四边形来估算圆周率,则的近似值是( )(精确到)(参考数据

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品.现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

1)将表示为的函数,求出该函数表达式;

2)根据直方图估计利润不少于57万元的概率;

3)根据频率分布直方图,估计一个销售季度内市场需求量的平均数与中位数的大小(保留到小数点后一位).

查看答案和解析>>

同步练习册答案