精英家教网 > 高中数学 > 题目详情
3.如图,正方形ABCD中,坐标原点O为AD的中点,正方形DEFG的边长为b,若D为抛物线y2=2ax(0<a<b)的焦点,且此抛物线经过C,F两点,则$\frac{b}{a}$=1+$\sqrt{2}$.

分析 求出F点坐标,代入抛物线方程即可得出a,b的关系得到关于$\frac{b}{a}$的方程,从而解出$\frac{b}{a}$.

解答 解:∵D是抛物线y2=2ax的焦点,∴D($\frac{a}{2}$,0).
∵正方形DEFG的边长为b,∴F($\frac{a}{2}+b$,b).
∵F在抛物线上,∴b2=2a($\frac{a}{2}+b$),即b2-2ab-a2=0,
∴($\frac{b}{a}$)2-$\frac{2b}{a}$-1=0,解得$\frac{b}{a}$=1+$\sqrt{2}$或1-$\sqrt{2}$.
∵0<a<b,∴$\frac{b}{a}$=1+$\sqrt{2}$.
故答案为:$1+\sqrt{2}$

点评 本题考查了抛物线的性质,换元法思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若A,B,C是三角形ABC的三个内角,求证:cos2A+cos2B+cos2C+2cosAcosBcosC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=2px(p>0)的焦点为F,过点F且倾斜角为60°的直线与抛物线交于A、B两点(A点位于x轴上方),若△AOF的面积为3$\sqrt{3}$,则p=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A是抛物线y=$\frac{{x}^{2}}{2}$上的一个动点,过A作圆D:x2+(y-$\frac{1}{2}$)2=r2(r>0)的两条切线,它们分别切圆D于E,F两点.
(1)当r=$\frac{3}{2}$,A点坐标为(2,2)时,求两条切线的方程;
(2)对于给定的正数r,当A运动时,A总在圆D外部,直线EF都不通过的点构成一个区域,求这个区域的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(Ⅰ) 若a=-2,求A∩∁RB;   
(Ⅱ) 若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知(x+a)2(x-1)3的展开式中,x4的系数为1,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x2-2x-3≥0},B={x|m-2≤x≤m+2,m∈R}.
(1)求Z∩∁RA;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,且过点(1,$\frac{3}{2}}$),其长轴的左右两个端点分别为A,B,直线y=$\frac{3}{2}$x+m交椭圆于两点C,D.
(1)求椭圆标准的方程;
(2)设直线AD,CB的斜率分别为k1,k2,若k1:k2=2:1,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各组函数中,表示同一函数的是(  )
A.y=x-1和y=$\root{3}{{(x-1)}^{3}}$B.y=$\frac{{x}^{4}-1}{{x}^{2}-1}$和y=x2+1
C.y=${3}^{{log}_{3}x}$和y=$\sqrt{{x}^{2}}$D.y=$\sqrt{{x}^{2}}$和y=x

查看答案和解析>>

同步练习册答案