精英家教网 > 高中数学 > 题目详情
、设函数,其中|t|≤1,将f(x)的最小值记为g(t).   
(1)求g(t)的表达式;     
(2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.
(1) g(t)=4t3-3t+3.
(2)当t=-1或时,这样的a存在,且a=1,使得g(t)≥成立.
而当t∈(-1,1]且t≠时,这样的a不存在.
该题考查函数的求导,以及利用函数的导数判断函数的单调性进而求出函数的最值,还考查了三角函数的公式的利用,以及恒成立问题.
(1)利用三角函数转换公式化简f(x),在用配方法得出函数的最简式,即可得出函数g(x)的表达式
(2)求出g(x)的导数,画出表格判断函数的单调性即可求出函数的最值,g(t)≤ 
成立,即≥g(t)的最大值,求出a的范围.
解析:(1)
        
由(sinx-t)2≥0,|t|≤1,故当sinx=t时,f(x)有最小值g(t),即g(t)=4t3-3t+3.
(2)我们有
列表如下:
t
(-1,-)

(-)

(,1)
g'(t)

0

0

G(t)

极大值g(-)

极小值g()

由此可见,g(t)在区间(-1,-)和(,1)单调增加,在区间(-)单调减小,极小值为g()
=2,又g(-1)=-4-(-3)+3=2    故g(t)在[-1,1]上的最小值为2
注意到:对任意的实数a,∈[-2,2]当且仅当a=1时,=2,对应的t=-1
,故当t=-1或时,这样的a存在,且a=1,使得g(t)≥成立.
而当t∈(-1,1]且t≠时,这样的a不存在.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若且对任意恒成立,试确定实数的取值范围;
(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(Ⅰ)当时,证明是增函数;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
设函数,且,其中是自然对数的底数.
(1)求的关系;
(2)若在其定义域内为单调函数,求的取值范围;
(3)设,若在上至少存在一点,使得成立,求实数
取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为实数,的导函数.
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的图像在处的切线与直线平行。
(1)求的直线;
(2)求函数在区间上的最小值;
(3)若,利用结论(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分8分)
已知函数,若函数上有3个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)已知函数()  
(1)求函数的极大值和极小值;
(2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ) 当时, 求函数的单调增区间;
(Ⅱ) 求函数在区间上的最小值;
(Ⅲ) 设,若存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案