精英家教网 > 高中数学 > 题目详情
已知函数
(1)若,试确定函数的单调区间;
(2)若且对任意恒成立,试确定实数的取值范围;
(3)设函数,求证:
(1)当时,单调递增;
时,单调递减
(2);(3)见解析。
(1)直接利用导数大(小)于零,求其单调增(减)区间即可.
(2)解本小题的关键是先根据为偶函数,确定恒成立等价于恒成立.
(3)
,得到
然后可得到 ….
,然后叠乘,可证出结论.
(1),令,解得
时,单调递增;
时,单调递减
(2)为偶函数,恒成立等价于恒成立
时,,令,解得
(1)当,即时,减,在
,解得
(2)当,即时,上单调递增,
,符合,
综上,
(3)


......
   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知函数
(1)求函数的单调区间和极值;
(2)已知函数的图象与函数的图象关于直线对称;
证明:当时,
(3)如果,证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数y=f(x)是定义在区间[-]上的偶函数,且
x∈[0,]时,
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的最大值;
(Ⅱ)对于一切正数,恒有成立,求实数的取值组成的集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

、设函数,其中|t|≤1,将f(x)的最小值记为g(t).   
(1)求g(t)的表达式;     
(2)对于区间[-1,1]中的某个t,是否存在实数a,使得不等式g(t)≤成立?如果存在,求出这样的a及其对应的t;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)已知函数时都取得极值.(1)求的值;
(2)求函数极小值及单调增区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的导函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.
(Ⅰ)令,讨论内的单调性并求极值;
(Ⅱ)当时,试判断的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数.
(1)求在[0,1]上的极值;
(2)若对任意,不等式成立,求实数的取值范围;
(3)若关于的方程在[0,1]上恰有两个不同的实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案