精英家教网 > 高中数学 > 题目详情
.
(Ⅰ)令,讨论内的单调性并求极值;
(Ⅱ)当时,试判断的大小.
(Ⅰ)内是减函数,在内是增函数。在处取得极小值,函数无极大值
(Ⅱ)>
本试题主要是考查了导数在研究函数中的运用。
(1)利用导数求解单调区间和极值的问题。先求解定义域和导数,然后解不等式得到结论。
(2)知,的极小值
于是由上表知,对一切,恒有.,从而得到单调性,证明不等式。
(Ⅰ)解:根据求导法则有

于是
列表如下:

故知内是减函数,在内是增函数,
所以,在处取得极小值,函数无极大值.
(Ⅱ)由知,的极小值.
于是由上表知,对一切,恒有.
从而当时,恒有,故内单调增加.
所以当时,,即.
故当时,恒有.又.
所以> .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若且对任意恒成立,试确定实数的取值范围;
(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(Ⅰ)若函数在定义域上是单调函数,求的取值范围;
(Ⅱ)若,证明对于任意的,不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知其中是自然对数的底 .
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)设,存在,使得成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)已知函数()  
(1)求函数的极大值和极小值;
(2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ) 当时, 求函数的单调增区间;
(Ⅱ) 求函数在区间上的最小值;
(Ⅲ) 设,若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.   
(1)设函数,若在区间是单调函数,求的取值范围;
(2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数),使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在[0,3]上的最大值,最小值分别是   (   )
A.5,-15B.5,-4C.-4,-15D.5,-16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知函数
(Ⅰ)当时,求的值域
(Ⅱ)设,若恒成立,求实数a的取值范围
(III)设,若上的所有极值点按从小到大排成一列
求证:

查看答案和解析>>

同步练习册答案