精英家教网 > 高中数学 > 题目详情
(本小题满分12分)设函数
(Ⅰ)若函数在定义域上是单调函数,求的取值范围;
(Ⅱ)若,证明对于任意的,不等式
(I)当时,上为单调函数.
(II)见解析。
本试题主要是运用导数研究函数 单调性和证明不等式的运用。
(1)因为
要使上为单调函数只须在恒成立,
转化为恒成立思想求解。
(2)因为时,

,结合导数判定结论。
(I)解:
要使上为单调函数只须在恒成立,
,则,在有最大值 ∴只须
,则,在上,无最小值故满足的b不存在.
由上得出当时,上为单调函数.
(II)时,


    ∴函数上为减函数
    ∴当时,,即
   ∴,∴
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的最大值;
(Ⅱ)对于一切正数,恒有成立,求实数的取值组成的集合.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题10分)已知函数时都取得极值.(1)求的值;
(2)求函数极小值及单调增区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数.
(1)求函数的单调区间;
(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)求证:当时,有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a<1,集合.
(1)求集合D(用区间表示);
(2)求函数在D内的极值点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、函数的递增区间是                        
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.
(Ⅰ)令,讨论内的单调性并求极值;
(Ⅱ)当时,试判断的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在定义域R内可导,若,若的大小关系是
A.B.   C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在区间上单调递增,那么实数的取值范围是(   )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案