精英家教网 > 高中数学 > 题目详情
(本题10分)已知函数时都取得极值.(1)求的值;
(2)求函数极小值及单调增区间。
(1)
(2)
本试题主要是考查了导数在研究函数中的运用。
(1)根据所给的函数的解析式,对函数求导,使得导函数等于0,得到关于a,b的关系式,解方程组即可,写出函数的解析式.
(2)对函数求导,写出函数的导函数等于0的x的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到结果.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;
(2)求证:在(1)的条件下,
(3)是否存在实数,使的最小值是3,如果存在,求出的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若且对任意恒成立,试确定实数的取值范围;
(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(Ⅰ)若函数在定义域上是单调函数,求的取值范围;
(Ⅱ)若,证明对于任意的,不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在R上的奇函数,且,当x>0时,有的导数小于零恒成立,则不等式的解集是(    )
A.(一2,0)(2,+ B.(一2,0)(0,2)
C.(-,-2)(2,+ D.(-,-2)(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)
的导数为,若函数的图像关于直线对称,且
(Ⅰ)求实数的值(Ⅱ)求函数的极值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)已知函数()  
(1)求函数的极大值和极小值;
(2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.   
(1)设函数,若在区间是单调函数,求的取值范围;
(2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数),使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的值域;
(Ⅱ)设,函数.若对任意,总存在,使,求实数的取值范围.

查看答案和解析>>

同步练习册答案