精英家教网 > 高中数学 > 题目详情
已知函数在区间上单调递增,那么实数的取值范围是(   )
A.
B.
C.
D.
B
解:因为函数在给定区间单调递增,则满足,则,选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;
(2)求证:在(1)的条件下,
(3)是否存在实数,使的最小值是3,如果存在,求出的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(Ⅰ)若函数在定义域上是单调函数,求的取值范围;
(Ⅱ)若,证明对于任意的,不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-2+lnx.
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)若函数f(x)在区间[1,2]上为单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.   
(1)设函数,若在区间是单调函数,求的取值范围;
(2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数),使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(16分)设函数
⑴当时,讨论函数的单调性;
⑵若函数仅在处有极值,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在[0,3]上的最大值,最小值分别是   (   )
A.5,-15B.5,-4C.-4,-15D.5,-16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若上无极值,求值;
(2)求上的最小值表达式;
(3)若对任意的,任意的,均有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的值域;
(Ⅱ)设,函数.若对任意,总存在,使,求实数的取值范围.

查看答案和解析>>

同步练习册答案