精英家教网 > 高中数学 > 题目详情
、函数的递增区间是                        
A.B.
C.D.
C
解:因为(x)0),那么令导数大于零得到单调增区间为x>,选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=4x3+ax2+bx+5在x=与x=-1时有极值.
(1)写出函数的解析式;
(2)指出函数的单调区间;
(3)求f(x)在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(Ⅰ)若函数在定义域上是单调函数,求的取值范围;
(Ⅱ)若,证明对于任意的,不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知函数
(Ⅰ)若函数处取到极值,求的值.
(Ⅱ)设定义在上的函数在点处的切线方程为,若内恒成立,则称为函数的的“HOLD点”.当时,试问函数是否存在“HOLD点”,若存在,请至少求出一个“HOLD点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数 (为实常数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若函数在区间上无极值,求的取值范围;
(Ⅲ)已知,求证: .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)
的导数为,若函数的图像关于直线对称,且
(Ⅰ)求实数的值(Ⅱ)求函数的极值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.如图为函数的图象,为函数的导函数,则不等式的解集为(         ).
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(16分)设函数
⑴当时,讨论函数的单调性;
⑵若函数仅在处有极值,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知都是定义在上的函数,并满足:(1)
(2);(3),则(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案