精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)求函数的最大值;
(Ⅱ)对于一切正数,恒有成立,求实数的取值组成的集合.
(Ⅰ)的最大值为            (Ⅱ)
本试题主要是考查了导数在研究函数中的运用。
(1)因为根据已知条件可知求解的函数解析式得到函数定义域和导数,然后求解导数,令导数大于零或者小于零得到函数的单调性,从而求解函数的极值和最值。
(2)要是对于一切的实数x,不等式恒成立,可以构造函数利用导数求解最值得到结论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;
(2)求证:在(1)的条件下,
(3)是否存在实数,使的最小值是3,如果存在,求出的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=4x3+ax2+bx+5在x=与x=-1时有极值.
(1)写出函数的解析式;
(2)指出函数的单调区间;
(3)求f(x)在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若且对任意恒成立,试确定实数的取值范围;
(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(Ⅰ)若函数在定义域上是单调函数,求的取值范围;
(Ⅱ)若,证明对于任意的,不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x-.
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时,x2+lnx<x3.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)
的导数为,若函数的图像关于直线对称,且
(Ⅰ)求实数的值(Ⅱ)求函数的极值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若上无极值,求值;
(2)求上的最小值表达式;
(3)若对任意的,任意的,均有成立,求的取值范围.

查看答案和解析>>

同步练习册答案