精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是定义在区间[-]上的偶函数,且
x∈[0,]时,
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图像上,顶点C,D在x轴上,求矩形ABCD面积的最大值.
(1) (2)6
本题主要考查了分段函数、函数的最值及其几何意义及利用导数研究函数的极值,属于中档题.
(1)欲求函数f(x)的解析式,只须求出函数f(x)在x∈[- ,0]时的解析式即可,利用函数的偶函数性质即可由y轴右侧的表达式求出在y轴左侧的表达式.最后利用分段函数写出解析式即可.
(2)设A点在第一象限,坐标为A(t,-t2-t+5),利用对称性求出B点坐标,进而求出矩形ABCD面积,最后利用导数求出此面积表达式的最大值即可.
解(1)当x∈时,-x∈
.又∵f(x)是偶函数,

.
(2)由题意,不妨设A点在第一象限,
坐标为(t,-t2-t+5),其中t∈
由图象对称性可知B点坐标为
则S(t)=  =
s′(t)=.由s′(t)=0,得(舍去),
当0<t<1时,s′(t)>0;t>1时,s′(t)<0.
∴S(t)在(0,1]上单调递增,在上单调递减.
∴当t=1时,矩形ABCD的面积取得极大值6,
且此极大值也是S(t)在t∈上的最大值.
从而当t=1时,矩形ABCD的面积取得最大值6.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知,其中是自然常数,
(1)讨论时, 的单调性、极值;
(2)求证:在(1)的条件下,
(3)是否存在实数,使的最小值是3,如果存在,求出的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试确定函数的单调区间;
(2)若且对任意恒成立,试确定实数的取值范围;
(3)设函数,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是函数的一个极值点。
(Ⅰ)求
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数的图象有3个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在R上的奇函数,且,当x>0时,有的导数小于零恒成立,则不等式的解集是(    )
A.(一2,0)(2,+ B.(一2,0)(0,2)
C.(-,-2)(2,+ D.(-,-2)(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知其中是自然对数的底 .
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)设,存在,使得成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+lnx.
(1)求函数f(x)的单调区间;
(2)求证:当x>1时,x2+lnx<x3.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为实数,的导函数.
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.   
(1)设函数,若在区间是单调函数,求的取值范围;
(2)设函数,是否存在,对任意给定的非零实数,存在惟一的非零实数),使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案