精英家教网 > 高中数学 > 题目详情
已知函数的定义域为,且. 设点是函数图象上的任意一点,过点分别作直线轴的垂线,垂足分别为
(1)求的值;
(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设为坐标原点,求四边形面积的最小值.
(1).(2)有,即为定值,这个值为1.
(3)四边形面积有最小值
(1)∵ ,∴ .                     
(2)设点的坐标为,则有
                                               
由点到直线的距离公式可知:,         
故有,即为定值,这个值为1.         
(3)由题意可设,可知.
与直线垂直,∴ ,即
解得 ,又,∴ .
,                                     
,     
当且仅当时,等号成立.
∴ 此时四边形面积有最小值.                     
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

对于函数,若存在x0∈R,使f(x0)=x0成立,则称x0f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2.
(Ⅰ)试求bc满足的关系式;
(Ⅱ)若c=2时,各项不为零的数列{an}满足4Sn·f()=1,
求证:
(Ⅲ)设bn=-Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分,第(1)小题4分,第(2)小题7分,第(3)小题7分)
对于两个定义域相同的函数,如果存在实数使得,则称函数是由“基函数”生成的.
(1)若+2生成一个偶函数,求的值;
(2)若=2+3-1由函数∈R且≠0生成,求+2的取值范围;
(3)如果给定实系数基函数≠0,问:任意一个一次函数是否都可以由它们生成?请给出你的结论并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义,已知实数xy满足|x|≤2,|y|≤2,
 则z的取值范围是                                                         (  )
A.[-7,10]B.[-6,10]C.[-6,8]D.[-7,8]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设计一种正四棱柱形冰箱,它有一个冷冻室和一个冷藏室,冷藏室用两层隔板分为三个抽屉,问:如何设计它的外形尺寸,能使得冰箱体积为定值时,它的表面和三层隔板(包括冷冻室的底层)面积之和S值最小(参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某市的出租车的价格规定:起步费11元,可行3千米;3千米后按每千米2.1元计价,可再行7千米;以后每千米都按3.15元计价,设每一次乘车的车费由行车里程确定.
(1)请写出一次乘车的车费y元与行车的里程x千米的函数关系;
(2)计算如果一次乘车费为32元,那么汽车行程为多少千米?
(3)请问当行程为28千米时,请你设计一种乘车方案,使总费用最省.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

幂指函数在求导时,可运用对数法:在函数解析式两边求对数得,两边同时求导得,于是.运用此方法可以探求的一个单调递增区间是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数满足对任意的都有成立,则      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

规定一种运算:,例如:12=1,32=2,则函数的值域为                .

查看答案和解析>>

同步练习册答案