精英家教网 > 高中数学 > 题目详情

【题目】如图有一景区的平面图是一半圆形,其中直径长为两点在半圆弧上满足,设,现要在景区内铺设一条观光通道,由 组成.

(1)用表示观光通道的长,并求观光通道的最大值;

(2)现要在景区内绿化,其中在中种植鲜花,在中种植果树,在扇形内种植草坪,已知单位面积内种植鲜花和种植果树的利润均是种植草坪利润的 倍,则当为何值时总利润最大?

【答案】(1);(2)当时,总利润取最大值.

【解析】

1)根据直径的长度和角度计算出的长度,写出的函数解析式,注意定义域,判断取何值的时候有最大值并计算出最大值;

2)设出单位面积的利润,将三个三角形的面积计算出来并求利润和的表示,利用导数去计算函数的最值,确定取等号时的取值.

(1)作,垂足为,在直角三角形中,

所以

同理作,垂足为,所以,如图:

所以,

时,取最大值.

(2)设种植草坪单位面积的利润为

,

则总利润,

,

因为,所以当时,,所以递增,递减,

所以当时总利润取最大值,最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,在点处的切线方程为,求(1)实数的值;(2)函数的单调区间以及在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F为椭圆C的左焦点,过F作两条互相垂直的直线,直线C交于AB两点,直线C交于DE两点,则四边形ADBE的面积最小值为(

A.4B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若上成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,点EF分别是棱上的动点,且.当三棱锥的体积取得最大值时,记二面角平面角分别为,则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心C在直线上,且与x轴正半轴相切,点C与坐标原点O的距离为.

1)求圆C的标准方程;

2)直线l过点 且与圆C相交于AB两点,求弦长的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的通项公式为an=则数列{an}中的最大项为(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点分别为的中点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案