精英家教网 > 高中数学 > 题目详情

【题目】已知圆C的圆心C在直线上,且与x轴正半轴相切,点C与坐标原点O的距离为.

1)求圆C的标准方程;

2)直线l过点 且与圆C相交于AB两点,求弦长的最小值及此时直线l的方程.

【答案】1;(2.

【解析】

1)结合直线的方程设出圆心坐标以及半径,根据两点间距离公式以及题设条件,即可得出圆C的标准方程;

2)当直线的斜率不存在时,得出直线的方程,根据方程得出,当直线l的斜率存在时,设出直线的方程,利用点到直线的距离公式以及弦长公式得出,进而得出弦长的最小值以及直线的方程.

1)由题可设圆心,半径r

.

又∵圆Cx轴正半轴相切

∴圆C的标准方程:

2)①当直线l的斜率不存在时,

直线l的方程为x1,此时弦长

②当直线l的斜率存在时,设直线l的方程:

C到直线l的距离,则弦长

k0时,弦长取最小值

此时直线l的方程为.

由①②知当直线l的方程为时,弦长取最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足.

(1)若,试问是否存在实数,使得数列是等比数列?若存在,求出的值;若不存在,请说明理由;

(2)在(1)的条件下,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图像如图所示,若分别为最高点与最低点,为图象与轴交点,且的面积为.

(1)求函数的单调递增区间;

(2)若将的图像向左平移个单位长度,得到函数的图像,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图有一景区的平面图是一半圆形,其中直径长为两点在半圆弧上满足,设,现要在景区内铺设一条观光通道,由 组成.

(1)用表示观光通道的长,并求观光通道的最大值;

(2)现要在景区内绿化,其中在中种植鲜花,在中种植果树,在扇形内种植草坪,已知单位面积内种植鲜花和种植果树的利润均是种植草坪利润的 倍,则当为何值时总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

1)求椭圆的方程;

2)圆的切线与椭圆相交于两点,证明:为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求在点处的切线方程;

2)求证:上仅有个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,又有四个零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,地图上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高位10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从AF的圆弧.

1)若圆形标志物半径为25m,以PG所在直线为X轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;

2)若在点P处观测该圆形标志的最大视角(即)的正切值为,求该圆形标志物的半径.

查看答案和解析>>

同步练习册答案