精英家教网 > 高中数学 > 题目详情
已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若B⊆A,求实数m的取值范围.
分析:(1)根据两个集合的交集、并集的定义求出A∩B,A∪B.
(2)根据B⊆A,分B=∅时和B≠∅时两种情况,分别求得m的范围,再取并集,即得所求.
解答:解:(1)当m=3时,∵集合A={x|-2≤x≤5},B={x|4≤x≤5},
∴A∩B={x|4≤x≤5},A∪B={x|-2≤x≤5}.
(2)∵A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,
当B=∅时,m+1>2m-1,解得 m<2.
当B≠∅时,则有
m+1≤2m-1
m+1≥-2
2m-1≤5
 解得 3≥m≥2.
综上可得,m≤3,
故实数m的取值范围为(-∞,3].
点评:本题主要考查集合关系中参数的取值范围问题,集合间的包含关系,两个集合的交集、并集的定义和求法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案