精英家教网 > 高中数学 > 题目详情
15.已知双曲线的标准方程为$\frac{x^2}{3}-{y^2}=1$,直线l:y=kx+m(k≠0,m≠0)与双曲线交于不同的两点C、D,若C、D两点在以点A(0,-1)为圆心的同一个圆上,则实数m的取值范围是(  )
A.$\{m|-\frac{1}{4}<m<0\}$B.{m|m>4}C.{m|0<m<4}D.$\{m|-\frac{1}{4}<m<0或m>4\}$

分析 M(x1,y1),N(x2,y3),线段MN的中点为B((x0,y0),根据韦达定理和中点坐标公式,以及斜率公式即可求出

解答 解:设M(x1,y1),N(x2,y3),线段MN的中点为B((x0,y0),
由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}-3{y}^{2}=3}\end{array}\right.$,可得(3k2-1)x2+6kmx+3m2+3=0
∴$\left\{\begin{array}{l}{3{k}^{2}-1≠0}\\{△>0}\end{array}\right.$,即$\left\{\begin{array}{l}{{k}^{2}≠\frac{1}{3}}\\{{m}^{2}+1>3{k}^{2}}\end{array}\right.$,①,
由$\left\{\begin{array}{l}{{x}_{0}=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{3km}{3{k}^{2}-1}}\\{{y}_{0}=kx+m=-\frac{m}{3{k}^{2}-1}}\end{array}\right.$,
根据题意可得AB⊥MN,
∴kAB=$\frac{{y}_{0}+1}{{x}_{0}-0}$=$\frac{-m+3{k}^{2}-1}{-3km}$=-$\frac{1}{k}$,3k2=m+1,②,
由①②可得$\left\{\begin{array}{l}{4m+1>0}\\{{m}^{2}+1>4m+1}\\{4m+1≠1}\end{array}\right.$,解得m>4或-$\frac{1}{4}$<m<0,
故选:D

点评 本题考查了双曲线和直线的关系以及韦达定理中点坐标公式斜率公式,考查了学生的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.一个扇形的所在的圆的半径为5,该扇形的弧长为5
(1)求该扇形的面积              
(2)求该扇形中心角的弧度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.寒假期间,为了让同学们有国际视野,我校组织了部分同学到美国游学.已知李老师所带的队有3名男同学A、B、C和3名女同学X,Y,Z构成,其班级情况如表:
甲班乙班丙班
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人做回访(每人被选到的可能性相同)
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在∠BAC=θ,中,角A、B、C的对边分别是a,b,c已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,则△ABC的面积为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正三棱柱ABC-A1B1C1的所有顶点都在球O的球面上,底面△ABC是边长为3的正三角形,侧棱长为2,则球O的表面积为(  )
A.B.C.16πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\overrightarrow{a}$与 $\overrightarrow{b}$的长都为2,且$\overrightarrow{a}⊥(\overrightarrow{b}-\overrightarrow{a}$),则$\overrightarrow{a}$?$\overrightarrow{b}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥S-ABC中,SA⊥底面ABC,SA=AB=$\frac{1}{2}$AC=a,∠BAC=60°,D是SC上的点.
(Ⅰ)若SD=$\frac{1}{4}$SC,求证:AC⊥BD;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知logax>logay(0<a<1),则下列不等式成立的是(  )
A.3x-y<1B.lnx>lnyC.sin x>sin yD.x3>y3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面直角坐际系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1方程为ρ=2sinθ;C2的参数方程为$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数).
(I)写出曲线C1的直角坐标方程并判断点(1,$\frac{π}{4}$)和曲线C1的位置关系.
(Ⅱ)若曲线C1与曲线C2距离的交点为A,B且|AB|=$\frac{4\sqrt{5}}{5}$,求曲线C2的普通方程.

查看答案和解析>>

同步练习册答案