Èçͼ£¬ABCDÊDZ߳¤Îª10º£ÀïµÄÕý·½Ðκ£Óò£®ÏÖÓÐÒ»¼Ü·É»úÔڸú£ÓòʧÊ£¬Á½ËÒº£ÊÂËѾȴ¬ÔÚA´¦Í¬Ê±³ö·¢£¬ÑØÖ±ÏßAP¡¢AQÏòǰÁªºÏËÑË÷£¬ÇÒ¡ÏPAQ=
¦Ð
4
£¨ÆäÖеãP¡¢Q·Ö±ðÔÚ±ßBC¡¢CDÉÏ£©£¬ËÑË÷ÇøÓòÎªÆ½ÃæËıßÐÎAPCQΧ³ÉµÄº£Æ½Ã森Éè¡ÏPAB=¦È£¬ËÑË÷ÇøÓòµÄÃæ»ýΪS£®
£¨1£©ÊÔ½¨Á¢SÓëtan¦ÈµÄ¹ØÏµÊ½£¬²¢Ö¸³ö¦ÈµÄȡֵ·¶Î§£»
£¨2£©ÇóSµÄ×î´óÖµ£¬²¢Çó´Ëʱ¦ÈµÄÖµ£®
¿¼µã£º½âÈý½ÇÐεÄʵ¼ÊÓ¦ÓÃ
רÌ⣺×ÛºÏÌâ,½âÈý½ÇÐÎ
·ÖÎö£º£¨1£©ÀûÓÃS=SABCD-S¡÷ABP-S¡÷ADQ£¬¿ÉµÃSÓëtan¦ÈµÄ¹ØÏµÊ½£»
£¨2£©Áît=1+tan¦È£¬t¡Ê£¨1£¬2£©£¬ÀûÓûù±¾²»µÈʽ£¬¿ÉÇóSµÄ×î´óÖµ£¬²¢Çó´Ëʱ¦ÈµÄÖµ£®
½â´ð£º ½â£º£¨1£©S=SABCD-S¡÷ABP-S¡÷ADQ¡­2·Ö
=100-50tan¦È-50tan(
¦Ð
4
-¦È)
¡­4·Ö
=100-50(tan¦È+
1-tan¦È
1+tan¦È
)£¬(0£¼¦È£¼
¦Ð
4
)
¡­6·Ö
£¨2£©Áît=1+tan¦È£¬t¡Ê£¨1£¬2£©¡­8·Ö
S=100-50[
1+(t-1)2
t
]=100-50(t+
2
t
-2)=200-50(t+
2
t
)
¡­10·Ö
¡ßt+
2
t
¡Ý2
t•
2
t
=2
2
£¬£¨µ±ÇÒ½öµ±t=
2
t
ʱ£¬¼´t=
2
¡Ê(1£¬2)
£¬µÈºÅ³ÉÁ¢£©¡­12·Ö
¡àµ±t=
2
ʱ£¬ËÑË÷ÇøÓòÃæ»ýSµÄ×î´óֵΪ200-100
2
£¨Æ½·½º£À
´Ëʱ£¬¦È=arctan(
2
-1)
¡­14·Ö£®
µãÆÀ£º±¾Ì⿼²éÈý½ÇÐÎÃæ»ýµÄ¼ÆË㣬¿¼²é»»Ôª·¨£¬¿¼²é»ù±¾²»µÈʽµÄÓ¦Óã¬È·¶¨º¯Êý½âÎöʽÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x2+bx+c£¨ÆäÖÐb£¬cΪʵ³£Êý£©£®
£¨1£©Èôb£¾2£¬ÇÒy=f£¨sinx£©µÄ×î´óֵΪ5£¬×îСֵΪ-1£¬Çóº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÊÇ·ñ´æÔÚÕâÑùµÄº¯Êýy=f£¨x£©£¬Ê¹µÃ{y|y=x2+bx+c£¬-1¡Üx¡Ü0}=[-1£¬0]£¬Èô´æÔÚ£¬Çó³öf£¨x£©µÄ½âÎöʽ£»
£¨3£©ÒÑÖª¼¯ºÏA={x|x2+Bx+C=x}ÖÐÓÐÇÒ½öÓÐÒ»¸öÔªËØ£¬Èôf[f£¨x0£©]=x0£¬ÇóÖ¤£ºf£¨x0£©=x0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒ´æÔÚ³£Êýp£¬r£¬t£¨ÆäÖÐr¡Ù0£©£¬Ê¹µÃan+an+1=r•2n-1Óëan+1=pan-pt¶ÔÈÎÒâÕýÕûÊýn¶¼³ÉÁ¢£»ÊýÁÐ{bn}ΪµÈ²îÊýÁУ®
£¨1£©Çó³£Êýp£¬r£¬t£®²¢Ð´³öÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èç¹û{bn}Âú×ãÌõ¼þ£º¢Ùb1ΪÕýÕûÊý£»¢Ú¹«²îΪ1£»¢ÛÏîÊýΪm£¨mΪ³£Êý£©£»¢Ü2£¨1+
1
b1
£©£¨1+
1
b2
£©£¨1+
1
b3
£©¡­£¨1+
1
bn
£©=log2am£¬ÊÔÇóËùÓÐÂú×ãÌõ¼þµÄmÖµ£®
£¨3£©Èç¹ûÊýÁÐ{an}ÓëÊýÁÐ{bn}ûÓй«¹²ÏÊýÁÐ{an}Óë{bn}µÄËùÓÐÏî°´´ÓСµ½´óµÄ˳ÐòÅÅÁгɣº1£¬c2£¬c3£¬c4£¬4£¬¡­£¬ÇÒ1£¬c2£¬c3£¬c4£¬4³ÉµÈ±ÈÊýÁУ¬ÊÔÇóÂú×ãÌõ¼þµÄËùÓÐÊýÁÐ{bn}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬¶ÔÈÎÒâʵÊýx1£¬x2¶¼ÓÐf£¨x1+x2£©=1+f£¨x1£©+f£¨x2£©£¬ÇÒf£¨1£©=1£®
£¨1£©Èô¶ÔÈÎÒâÕýÕûÊýn£¬ÓÐan=f£¨
1
2n
£©+1£¬Çóa1¡¢a2µÄÖµ£¬²¢Ö¤Ã÷{an}ΪµÈ±ÈÊýÁУ»
£¨2£©Éè¶ÔÈÎÒâÕýÕûÊýn£¬ÓÐbn=
1
f(n)
£¬Èô²»µÈʽbn+1+bn+2+¡­+b2n£¾
6
35
log2£¨x+1£©¶ÔÈÎÒⲻСÓÚ2µÄÕýÕûÊýn¶¼³ÉÁ¢£¬ÇóʵÊýxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijµØÇø×¢ÖØÉú̬»·¾³½¨É裬ÿÄêÓÃÓÚ¸ÄÔìÉú̬»·¾³×Ü·ÑÓÃΪxÒÚÔª£¨x¡Ê[a£¬b]£©£¬ÆäÖÐÓÃÓÚ·ç¾°Çø¸ÄÔì·ÑÓÃΪyÒÚÔª£®¸ÃÊоö¶¨½¨Á¢Éú̬»·¾³¸ÄÔìͶ×Ê·½°¸£¬¸Ã·½°¸ÒªÇóͬʱ¾ß±¸ÏÂÁÐÌõ¼þ£º
¢ÙÿÄêÓÃÓÚ·ç¾°Çø¸ÄÔì·ÑÓÃËæÃ¿Äê¸ÄÔìÉú̬»·¾³×Ü·ÑÓÃÔö¼Ó¶øÔö¼Ó£»
¢ÚÿÄêÓÃÓÚ·ç¾°Çø¸ÄÔì·ÑÓò»µÃµÍÓÚ¸ÄÔìÉú̬»·¾³×Ü·ÑÓõÄ15%£¬µ«²»µÃ¸ßÓÚ¸ÄÔìÉú̬»·¾³×Ü·ÑÓõÄ22%£®
£¨1£©Èôa=2£¬b=2.5£¬ÇëÄã·ÖÎöÄÜ·ñ²ÉÓú¯ÊýÄ£ÐÍy=
1
100
£¨x3+4x+16£©×÷ΪÉú̬»·¾³¸ÄÔìͶ×Ê·½°¸£»
£¨2£©Èôa£¬bÈ¡ÕýÕûÊý£¬²¢Óú¯ÊýÄ£ÐÍy=
1
100
£¨x3+4x+16£©×÷ΪÉú̬»·¾³¸ÄÔìͶ×Ê·½°¸£¬ÇëÄãÇó³öa£¬bµÄȡֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪԲÐĵÄÔ²ÓëÖ±Ïߣºx-
3
y=4ÏàÇÐ
£¨1£©ÇóÔ²OµÄ·½³Ì
£¨2£©Ô²OÓëxÖáÏཻÓÚA¡¢BÁ½µã£¬Ô²Äڵ͝µãPʹ|PA|¡¢|PO|¡¢|PB|³ÉµÈ±ÈÊýÁУ®
¢ÙÇóµãP¹ì¼£
¢ÚÇó
PA
PB
µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=-£¨x-1£©2+m£¬g£¨x£©=xex£¬Èô?x1£¬x2¡ÊR£¬Ê¹µÃf£¨x1£©¡Ýg£¨x2£©³ÉÁ¢£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåÓ³Éäf£ºA¡úB£¬ÆäÖÐA={£¨m£¬n£©|m£¬n¡ÊR}£¬B=R£¬ÒÑÖª¶ÔËùÓеÄÓÐÐòÕýÕûÊý¶Ô£¨m£¬n£©Âú×ãÏÂÊöÌõ¼þ£º
¢Ùf£¨m£¬1£©=1£»¢ÚÈôn£¼m£¬f£¨m£¬n£©=0£»¢Ûf£¨m+1£¬n£©=n[f£¨m£¬n£©+f£¨m£¬n-1£©]£®Ôòf£¨n£¬2£©=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸´Êý
3i+4
1+2i
µÄÐ鲿ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸