精英家教网 > 高中数学 > 题目详情
已知中心在原点,顶点A1A2x轴上,离心率e=的双曲线过点P(6,6).
(1)求双曲线方程.
(2)动直线l经过△A1PA2的重心G,与双曲线交于不同的两点MN,问:是否存在直线l,使G平分线段MN,证明你的结论.
(1)=1 (2)所求直线l不存在
(1)如图,设双曲线方程为=1.

由已知得,解得a2=9,b2=12.
所以所求双曲线方程为=1.
(2)PA1A2的坐标依次为(6,6)、(3,0)、(-3,0),
∴其重心G的坐标为(2,2)
假设存在直线l,使G(2,2)平分线段MN,设M(x1,y1),N(x2,y2). 则有
,∴kl=
l的方程为y= (x-2)+2,
,消去y,整理得x2-4x+28=0.
Δ=16-4×28<0,∴所求直线l不存在.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:),其离心率为,两准线之间的距离为。(1)求之值;(2)设点A坐标为(6, 0),B为椭圆C上的动点,以A为直角顶点,作等腰直角△ABP(字母A,B,P按顺时针方向排列),求P点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的中心在原点,焦点在轴上,离心率.已知点到这个椭圆上的点的最远距离为,求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某检验员通常用一个直径为2 cm和一个直径为1 cm的标准圆柱,检测一个直径为3 cm的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过三点.
(1)求椭圆的方程:
(2)若点D为椭圆上不同于的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;
(3)若直线与椭圆交于两点,证明直线与直线的交点在直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题



查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,能否在椭圆上位于轴左侧的部分找到一点,使其到左准线的距离为点到两个焦点的距离的等比中项?说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率=     

查看答案和解析>>

同步练习册答案