精英家教网 > 高中数学 > 题目详情
如图,直线l:y=x+b与抛物线x2=4y相切于点A.
(1)求实数b的值;
(2)若过抛物线的焦点且平行于直线l的直线l1交抛物线于B,C两点,求△ABC的面积.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由直线l:y=x+b与抛物线x2=4y,根据直线l与抛物线相切,可得△=16+16b=0,即可求实数b的值;
(2)由题意可知直线l1的方程为y=x+1,代入抛物线方程,利用弦长公式求出|BC|,求出点A到直线l1的距离,可求△ABC的面积.
解答: 解:(1)由直线l:y=x+b与抛物线x2=4y,消去y,
可$\end{array}\right.$得x2=4(x+b),即x2-4x-4b=0…(2分)
∵直线l与抛物线相切,
∴△=16+16b=0,即b=-1…(5分)
(2)∵抛物线的焦点为(0,1),
∴由题意可知直线l1的方程为y=x+1 …(7分)
y=x+1
x2=4y
得x2-4x-4=0…(8分)
设B(x1,y1),C(x2,y2),则x1+x2=4,x1x2=-4,
∴|BC|=
2
•|x1-x2|=
2
16+16
=8…(10分)
由(1)得点的坐标为A(2,1)…(11分)
∴点A到直线l1的距离d=
|2-1+1|
12+(-1)2
=
2
…(12分)
S△ABC=
1
2
|BC|d=4
2
  …(13分)
点评:本题考查直线与抛物线的位置关系,考查弦长公式,考查三角形面积的计算,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数y=3x2+2(a-1)x+a2,-1≤x≤1,
(1)求此函数的最小值;
(2)若函数值的最小值为13,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C有两个不同的交点A,B,且直线OA,OB的斜率之积为
1
2
,问是否存在直线l,使△AOB的面积的值为
2
2
?若存在,求直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=3x2-12x+5,当f(x)的定义域为[0,a]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=m(m>0)与抛物线y2=ax(a>0)相交于A(1,1),B(1,-1)两点.
(1)求圆O的半径,抛物线的焦点坐标及准线方程;
(2)设P是抛物线上不同于A,B的点,且在圆外部,PA的延长线交圆于点C,直线PB与x轴交于点D,点E在直线PB上,且四边形ODEC为等腰梯形,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在圆x2+y2=2上任取一点P,过点P作x轴的垂线段PD,D为垂足.点M在线段DP上,且
DM
=
2
2
DP

(Ⅰ)当点P在圆上运动时,求点M的轨迹方程;
(Ⅱ)记(Ⅰ)所得的曲线为C,已知过点N(2,0)的直线l与曲线C相交于两点A、B两点,设Q为曲线C上一点,且满足
OA
+
OB
=t
OQ
(其中O为坐标原点),求整数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正数数列{an}中,Sn为an的前n项和,若点(an,Sn)在函数y=
c2-x
c-1
的图象上,其中c为正常数,且c≠1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
n2 nan+2
2n+1
,当c=2的时候,是否存在正整数m、n(1<m<n),使得b1,bm,bn成等比数列?若存在,求出所有的m、n的值,若不存在,请说明理由;
(3)设数列{cn}满足cn=
n,n=2k-1
2an,n=2k
,k∈N*
,当c=
3
3
时候,在数列{cn}中,是否存在连续的三项cr,cr+1,cr+2,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数r的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M、N (异于村庄A),要求PM=PN=MN=2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件:
x≤1
y≤2
2x+y-2≥0
,则z=x+2y的最大值等于
 

查看答案和解析>>

同步练习册答案