精英家教网 > 高中数学 > 题目详情
13.过点(2,1)且与原点距离最大的直线的方程是(  )
A.x+2y-5=0B.y=$\frac{1}{2}$x+1C.2x+y-5=0D.3x+y-5=0

分析 过点P且与原点O距离最大的直线是过P点且与直线OP垂直的直线,由此求出直线方程.

解答 解:∵过点P(2,1)与原点O的直线斜率为kOP=$\frac{1}{2}$,
∴过点P且与原点O距离最大的直线方程的斜率是k=-$\frac{1}{{k}_{OP}}$=-2;
∴该直线的方程是y-1=-2(x-2),
化为一般方程是2x+y-5=0.
故选:C.

点评 本题考查了求直线方程的应用问题,解题时应先判断所求直线方程的位置是什么,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.如图,已知l1∥l2,AF:FB=2:5,BC:CD=4:1,则$\frac{AE}{EC}$=(  ) 
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在解不等式“x3+1>0”中,我们有如下解题思路:设f(x)=x3+1,则f(x) 在R上单调递增,且f(-1)=0,所以不等式x3+1>0的解集是(-1,+∞).类比上述解题思路,则不等式ex+x-1>0的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=lg({2sinx-1})+\sqrt{-{x^2}+3x}$的定义域为($\frac{π}{6}$,$\frac{5π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有下列四个命题:
p1:若幂函数f(x)=kxm过(3,9),则mk=2;
p2:函数f(x)=ex的反函数为g(x)=lnx;
p3:“a>1,b>1”是“f(x)=ax-b(a>0,a≠1)”的图象不过第二象限的必要不充分条件;
p4:“p∨q”为假是“p∧q”为假的充分不必要条件.其中正确的命题是(  )
A.p1,p2,p3B.p1,p2,p4C.p1,p3,p4D.p2,p3,p4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图△ABC内接于圆O,AB=AC,直线MN切圆O于点C,弦BD∥MN,AC与BD相交于点E.
(Ⅰ)求证:△ABE≌△ACD;
(Ⅱ)若AB=6,BC=4,求$\frac{DE}{AE}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在等腰直角三角形ABC中,斜边BC=4,AD是斜边BC上的高,将△ABD沿着AD折叠,使二面角C-AD-B为60°,则三棱锥A-BCD的体积是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)求四棱锥P-ABCD的表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已和AD是△ABC的角平分线,且AC=2,AB=3,A=60°,
(1)求△ABC的面积;
(2)求AD的长.

查看答案和解析>>

同步练习册答案