精英家教网 > 高中数学 > 题目详情
若动圆的圆心在抛物线上,且与直线相切,则此圆恒过定点(  )
A.B.C.D.
C

试题分析:直线为抛物线的准线,由抛物线定义知点到直线的距离与到点的距离相等,因此此圆恒过定点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.
(1)当线段AB的中点在直线上时,求直线的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=4x的焦点作直线l交抛物线于A、B两点,若线段AB中点的横坐标为3,则|AB|等于( )
A.10        B.8         C.6           D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线上一点P到焦点的距离是,则点P的横坐标是_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在抛物线上有一点,若它到点的距离与它到抛物线的焦点的距离之和最小,则点的坐标是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为,点在抛物线上,且,弦中点在准线上的射影为,则的最大值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过点的直线与抛物线交于两点,为坐标原点.
(1)若以为直径的圆经过原点,求直线的方程;
(2)若线段的中垂线交轴于点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线过点, 且直线与曲线交于两点. 若点恰好是的中点,则直线的方程是:                              .

查看答案和解析>>

同步练习册答案