精英家教网 > 高中数学 > 题目详情
已知直线过点, 且直线与曲线交于两点. 若点恰好是的中点,则直线的方程是:                              .

试题分析:设
,所以,所以直线的斜率为4,所以直线的方程为
点评:有关弦中点的问题常用点差法。利用直线和圆锥曲线的两个交点,把交点坐标设出并代入圆锥曲线的方程,作差。求出直线的斜率,然后利用中点求出直线方程。利用点差法可以减少很多的计算,所以在解有关的问题时用这种方法比较好
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线经过抛物线的焦点,且与抛物线交于两点,点为坐标原点.

(Ⅰ)证明:为钝角.
(Ⅱ)若的面积为,求直线的方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动圆的圆心在抛物线上,且与直线相切,则此圆恒过定点(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F为抛物线的焦点,为抛物线上不同的三点,点是△ABC的重心,为坐标原点,△、△、△的面积分别为,则(    )
A.9B.6 C.3D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当a为任意实数时,直线恒过定点P,则过点P的抛物线的标准方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点为F,A, B是该抛物线上的两点,弦AB过焦点F,且,则线段AB的中点坐标是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知抛物线上一动点,抛物线内一点,为焦点且的最小值为
求抛物线方程以及使得|PA|+|PF|最小时的P点坐标;
过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点? 若是,求出该定点坐标; 若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的准线为             

查看答案和解析>>

同步练习册答案