精英家教网 > 高中数学 > 题目详情
8.当函数$y={log_a}({x^2}-a)$为减函数时,下列四个结论:
①$\left\{{\begin{array}{l}{0<a<1}\\{x<-1}\end{array}}\right.$;②$\left\{{\begin{array}{l}{0<a<1}\\{x>1}\end{array}}\right.$;③$\left\{{\begin{array}{l}{a>1}\\{x<-1}\end{array}}\right.$;④$\left\{{\begin{array}{l}{a>1}\\{x>1}\end{array}}\right.$
可以成立的是②.

分析 由题意可得$\left\{\begin{array}{l}{0<a<1}\\{x>\sqrt{a}}\end{array}\right.$,或 $\left\{\begin{array}{l}{a>1}\\{x<-\sqrt{a}}\end{array}\right.$,结合所给的选项,可得结论.

解答 解:由函数$y={log_a}({x^2}-a)$为减函数,可得$\left\{\begin{array}{l}{0<a<1}\\{x>\sqrt{a}}\end{array}\right.$,或 $\left\{\begin{array}{l}{a>1}\\{x<-\sqrt{a}}\end{array}\right.$,
结合所给的选项,只有②满足,
故答案为:②.

点评 本题主要考查对数函数的单调性和特殊点,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在△ABC中,若$\frac{{a}^{2}}{{b}^{2}}$=$\frac{tanA}{tanB}$,则△ABC为(  )
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若cosθ•tanθ>0,且-x2cosθ>0,则角θ为第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若方程2log2x-log2(x-1)=m有两个解,则实数m的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=6,sinA-sinC=
sin(A-B)
(1)求B的大小.
(2)若b=$2\sqrt{7}$,求△ABC的面积;
(3)若1≤a≤6,求sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)=\left\{{\begin{array}{l}{|{x^2}-px-p|}\\{m{x^2}-{m^2}}\end{array},}\right.\begin{array}{l}{x≥0}\\{x<0}\end{array}$,
(Ⅰ)若f(x)在区间[0,1]上是增函数,求实数p的取值范围;
(Ⅱ)当a<b<0时,是否存在实数m,使得函数f(x)在区间[a,b]上的值域恰为[a,b]?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知两个单位向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{3}$,设向量$\overrightarrow c=\overrightarrow a+t\overrightarrow b$,其中t∈R,当$|{\overrightarrow c}|$取最小值时,t=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,$\overrightarrow{a}$=(1,$\sqrt{3}$),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}+2\overrightarrow{b}$|等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.4D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某空间几何体的三视图如图所示,则该几何体的体积是32.

查看答案和解析>>

同步练习册答案