精英家教网 > 高中数学 > 题目详情
12.(1)求(2-$\sqrt{x}$)8展开式中不含x4项的系数的和;
(2)若C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+C${\;}_{5}^{2}$+…+C${\;}_{n}^{2}$=363,求自然数n的值.

分析 (1)令x=1得(2-$\sqrt{x}$)8展开式中的各项系数和为1,再求得含x4项的系数,可得(2-$\sqrt{x}$)8展开式中不含x4项的系数的和.
(2)由条件利用二项式系数的性质,求得自然数n的值.

解答 解:(1)令x=1得(2-$\sqrt{x}$)8展开式中的各项系数和为1,而含x4项的系数为 $C_8^8{2^0}{(-1)^8}=1$,
故(2-$\sqrt{x}$)8展开式中不含x4项的系数的和为1-1=0.
(2)∵C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+C${\;}_{5}^{2}$+…+C${\;}_{n}^{2}$=${C}_{5}^{3}$+C${\;}_{5}^{2}$+…+C${\;}_{n}^{2}$=${C}_{n+1}^{3}$=364,∴n=13.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ln$\frac{x}{1-x}$,若f(a)+f(b)=0,且0<a<b,则ab的取值范围是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=lnx,g(x)=(2-a)(x-1)-2f(x).
(1)当a=1时,求函数g(x)的单调区间;
(2)设F(x)=f(x)+$\frac{b}{x+1}$(b>0),对任意的x1,x2∈[0,1],x1≠x2,都有$\frac{F({x}_{1})-F({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求实数b的取值范围;
(3)设A(x1,y1),B(x2,y2)是函数y=f(x)图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为k,证明:k>f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{4co{s}^{4}x-2cos2x-1}{tan(\frac{π}{4}+x)co{s}^{2}(\frac{π}{4}+x)}$.
(1)求f(-$\frac{5π}{12}$)的值;
(2)求g(x)=$\frac{1}{2}$f(x)+sin2x的对称轴,对称中心和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.对于命题p:?x∈R可使x2+x+1<0,则?p为:?x∈R,均有x2+x+1≥0
D.若命题p且q为假命题,则p、q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设实数集S是满足以下两个条件的集合:①1∉S;②若a∈S,则$\frac{1}{1-a}$∈S.
(1)求证:若a∈S,则1-$\frac{1}{a}$∈S;
(2)求证:集合S中至少有三个不同的元素.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\frac{π}{2}$<α<π,$\frac{π}{2}$<β-α<π,sinα=$\frac{\sqrt{5}}{5}$,cos(β-α)=-$\frac{3\sqrt{10}}{10}$.
(1)求cosβ的值;
(2)求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{3}$x3-x,f′(x)是函数f(x)的导函数,数列{an}满足条件:a1≥1,an+1≥f′(an+1).
(1)猜想an与2n-1的大小关系,并用数学归纳法证明你的结论;
(2)证明:$\frac{1}{1+{a}_{1}}$+$\frac{1}{1+{a}_{2}}$+$\frac{1}{1+{a}_{3}}$+…+$\frac{1}{1+{a}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(2x)=x2-x-1,求f(x).

查看答案和解析>>

同步练习册答案