精英家教网 > 高中数学 > 题目详情
18.已知集合A={x∈Z|(x-2)(x-5)≤0},B={3,6},则下列结论成立的是(  )
A.B⊆AB.A∪B=AC.A∩B=BD.A∩B={3}

分析 由(x-2)(x-5)≤0,解得2≤x≤5,又x∈Z,可得集合A={2,3,4,5},利用集合的运算性质即可判断出结论.

解答 解:∵(x-2)(x-5)≤0,
解得2≤x≤5,又x∈Z,
∴集合A={2,3,4,5},B={3,6},
∴A∩B={3},
故选:D.

点评 本题考查了一元二次不等式的解法、集合的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,m),若向量$\overrightarrow{a}$与2$\overrightarrow{a}$-$\overrightarrow{b}$共线,则m=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,内角A,B,C所对的边分别为a,b,c,c=2,A≠B.
(I)求$\frac{asinA-bsinB}{sin(A-B)}$的值;
(2)若△ABC的面积为1,且tanC=2,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的结果是(  )
A.1B.log2$\frac{6}{5}$C.log2$\frac{7}{3}$D.log23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若sin(θ-$\frac{π}{3}$)=$\frac{1}{3}$,0<θ<π,则cosθ=(  )
A.$\frac{-\sqrt{3}+2\sqrt{2}}{6}$B.$\frac{\sqrt{3}+2\sqrt{2}}{6}$C.$\frac{-\sqrt{3}±2\sqrt{2}}{6}$D.$\frac{\sqrt{3}±2\sqrt{2}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在公差不为0的等差数列{an}中,a2+a4=ap+aq,记$\frac{1}{p}$+$\frac{9}{q}$的最小值为m,若数列{bn}满足b1=$\frac{2}{11}$m,2bn+1-bn•bn+1=1,则b1+$\frac{{b}_{2}}{{2}^{2}}$+$\frac{{b}_{3}}{{3}^{2}}$+…+$\frac{{b}_{100}}{10{0}^{2}}$=(  )
A.$\frac{97}{100}$B.$\frac{99}{100}$C.$\frac{100}{101}$D.$\frac{102}{101}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.正四棱锥底面边长为2cm,侧面积为8cm2,则正四棱锥体积为$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.己知数列{an}是等差数列,其中a1=2,且a2,a3,a4+1成等比数列,数列{bn}的前n项和为Sn,满足bn+Sn=2.
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\frac{{a}_{n}{b}_{n}}{2}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6).求此三角形三边的高所在直线的斜率.

查看答案和解析>>

同步练习册答案