精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}满足a1=2, ;数列{bn}的前n项和为Sn , 且 . (Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)把数列{an}和{bn}的公共项从小到大排成新数列{cn},试写出c1 , c2 , 并证明{cn}为等比数列.

【答案】解:(Ⅰ)由已知,当n≥2时,an=[(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)]+a1=(2n﹣1+2n﹣2+…+2)+2=2n

又因为a1=2,

所以数列{an}的通项公式为

因为 ,所以,

两式做差可得bn=3n﹣2,且b1=S1=1也满足此式,

所以bn=3n﹣2;

(Ⅱ)由 ,bn=3n﹣2,可得c1=4=a2=b2,c2=a4=b6=16.

假设

则3m﹣2=2k

所以 ,不是数列{bn}中的项;

=3(4m﹣2)﹣2,是数列中的第4m﹣2项.

所以cn+1=b4m﹣2=

从而

所以{cn}是首项为4,公比为4的等比数列.


【解析】(Ⅰ)根据题意,对于数列{an},由递推公式可得an=[(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)]+a1,计算即可得数列{an}的通项公式,对于数列{bn},有Sn公式表示出 ,两式相减可得bn=3n﹣2,验证b1即可得答案;(2)根据题意,由数列{an}和{bn}的通项公式分析两个数列的相同项,可得新数列{cn}的通项公式,由等比数列的定义分析可得答案.
【考点精析】解答此题的关键在于理解等比关系的确定的相关知识,掌握等比数列可以通过定义法、中项法、通项公式法、前n项和法进行判断,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】长方体ABCD﹣A1B1C1D1中,AA1=2,BC= ,E为CC1的中点.

(1)求证:平面A1BE⊥平面B1CD;
(2)平面A1BE与底面A1B1C1D1所成的锐二面角的大小为θ,当 时,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的i值为(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题:
①若x≠1或y≠2,则x+y≠3;
②若空间向量 与空间中任一向量都不能组成空间的一组基底,则 共线;
③命题“x∈R,使得x2+x+1<0”的否定是:“x∈R,均有x2+x+1<0”;
④若A、B为两个定点,K为正常数,若|PA|+|PB|=K,则动点P的轨迹是椭圆;
⑤已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.
其中真命题有( )个.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 (a>b>0)的左、右焦点分别为F1(﹣3,0)、F2(3,0),直线y=kx与椭圆交于A、B两点.
(1)若三角形AF1F2的周长为 ,求椭圆的标准方程;
(2)若 ,且以AB为直径的圆过椭圆的右焦点,求直线y=kx斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P是双曲线 ﹣y2=1的右支上一点,M、N分别是(x+ 2+y2=1和(x﹣ 2+y2=1上的点,则|PM|﹣|PN|的最大值是(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)判断函数f(x)在区间[0,+∞)上的单调性,并用定义证明其结论;
(2)求函数f(x)在区间[2,9]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=1﹣ ,其中n∈N*
(1)设bn= ,求证:数列{bn}是等差数列,并求出{an}的通项公式;
(2)设cn= ,数列{cncn+2}的前n项和为Tn , 求证:Tn<3.

查看答案和解析>>

同步练习册答案