【题目】某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用= )
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
【答案】
(1)解:设楼房每平方米的平均综合费为y元,依题意得
y=(560+48x)+ =560+48x+ (x≥10,x∈N*);
(2)解:法一:∵x>0,∴48x+ ≥2 =1440,
当且仅当48x= ,即x=15时取到“=”,
此时,平均综合费用的最小值为560+1440=2000元.
答:当该楼房建造15层,可使楼房每平方米的平均综合费用最少,最少值为2000元.
法二:先考虑函数y=560+48x+ (x≥10,x∈R);
则y'=48﹣ ,令y'=0,即48﹣ =0,解得x=15,
当0<x<15时,y'<0;当x>15时,y'>0,又15∈N*,
因此,当x=15时,y取得最小值,ymin=2000元.
答:当该楼房建造15层,可使楼房每平方米的平均综合费用最少,最少值为2000元
【解析】(1)由已知得,楼房每平方米的平均综合费为每平方米的平均建筑费用为560+48x与平均地皮费用的和,由已知中某单位用2160万元购得一块空地,计划在该地块上建造一栋x层,每层2000平方米的楼房,我们易得楼房平均综合费用y关于建造层数x的函数关系式;(2)由(1)中的楼房平均综合费用y关于建造层数x的函数关系式,要求楼房每平方米的平均综合费用最小值,我们有两种思路,一是利用基本不等式,二是使用导数法,分析函数的单调性,再求最小值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x2+2|x﹣a|,x∈R.
(1)若函数f(x)为偶函数,求实数a的值;
(2)当x=﹣1时,函数f(x)在x=﹣1取得最大值,求实数a的取值范围.
(3)若函数f(x)有三个零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B,C为锐角△ABC的内角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆 的左右焦点分别为F1 , F2 , 离心率为 ,过点F1且垂直于x轴的直线被椭圆截得的弦长为 ,直线l:y=kx+m与椭圆交于不同的A,B两点.
(1)求椭圆C的方程;
(2)若在椭圆C上存在点Q满足: (O为坐标原点).求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a1=2,a3+a5=16. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)如果a2 , am , a2m成等比数列,求正整数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1=2, ;数列{bn}的前n项和为Sn , 且 . (Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)把数列{an}和{bn}的公共项从小到大排成新数列{cn},试写出c1 , c2 , 并证明{cn}为等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1 , M,N分别是A1B,B1C1的中点.
(1)求证:MN⊥平面A1BC;
(2)求直线BC1和平面A1BC所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校拟在广场上建造一个矩形花园,如图所示,中间是完全相同的两个椭圆型花坛,每个椭圆型花坛的面积均为216π平方米,两个椭圆花坛的距离是1.5米.整个矩形花坛的占地面积为S.
(注意:椭圆面积为πab,其中a,b分别为椭圆的长短半轴长)
(1)根据图中所给数据,试用a、b表示S;
(2)当椭圆形花坛的长轴长为多少米时,所建矩形花园占地最少?并求出最小面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正四棱锥S﹣ABCD中,O为顶点在底面内的投影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角是( )
A.30°
B.45°
C.60°
D.75°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com