【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为AB,BC中点,则异面直线EF与AB1所成角的余弦值为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】过点作一直线与抛物线交于两点,点是抛物线上到直线: 的距离最小的点,直线与直线交于点.
(Ⅰ)求点的坐标;
(Ⅱ)求证:直线平行于抛物线的对称轴.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)设g(x)=f(2x),求g(x)在[﹣3,0]的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A{x| ≥0},B={x|x2﹣2x﹣3<0},C={x|x2﹣(2a+1)x+a(a+1)<0}.
(1)求集合A,B及A∪B;
(2)若C(A∩B),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个函数:(1)y=1﹣x;(2)y=2x﹣1;(3)y=x2﹣1;(4)y= ,其中定义域与值域相同的函数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C与x轴相切,圆心C在射线3x﹣y=0(x>0)上,直线x﹣y=0被圆C截得的弦长为2
(1)求圆C标准方程;
(2)若点Q在直线l1:x+y+1=0上,经过点Q直线l2与圆C相切于p点,求|QP|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2]时F(x)=g(x)﹣f(x)有最小值为2,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.
(备注:函数y=x+ 在区间(0,1)上单调递减,在区间(1,+∞)上单调递增).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com