分析 (1)由题意,将f(1)=-1,f(2)=-3,带入计算出k,b的值即可得到解析式.
(2)将f(x)中的x替换即可得到f(a-1)的值.
解答 解:(1)由题意:f(x)=kx+b,
∵f(1)=-1,f(2)=-3,
即$\left\{\begin{array}{l}{-1=k+b}\\{-3=2k+b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-2}\\{b=1}\end{array}\right.$,
∴f(x)的解析式f(x)=-2x+1,
(2)由(1)可得f(x)=-2x+1,
那么:f(a-1)=-2(a-1)+1
=-2a+3,
所以f(a-1)的值为-2a+3.
点评 本题考查了函数的解析式的求法和带值计算.属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 几何题 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com