10£®ÒÑÖªµãPÔÚÅ×ÎïÏßx2=yÉÏÔ˶¯£¬¹ýµãP×÷yÖáµÄ´¹Ïß¶ÎPD£¬´¹×ãΪD£®¶¯µãM£¨x£¬y£©Âú×ã$\overrightarrow{DM}=2\overrightarrow{DP}$£¬ÉèµãMµÄ¹ì¼£ÎªÇúÏßC£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºy=-1£¬Èô¾­¹ýµãF£¨0£¬1£©µÄÖ±ÏßÓëÇúÏßCÏཻÓÚA¡¢BÁ½µã£¬¹ýµãA¡¢B·Ö±ð×÷Ö±ÏßlµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪA1¡¢B1£¬ÊÔÅжÏÖ±ÏßA1FÓëB1FµÄλÖùØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨¢ñ£©ÉèP£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{DM}=2\overrightarrow{DP}$ÖªµãPΪÏß¶ÎDMµÄÖе㣬$\left\{\begin{array}{l}{x_0}=\frac{1}{2}x\\{y_0}=y\end{array}\right.$£¬ÀûÓõãPÔÚÅ×ÎïÏßx2=yÉÏ£¬È»ºóÇó½âÇúÏßCµÄ·½³Ì£®
£¨¢ò£©ÅжϣºÖ±ÏßA1FÓëB1F´¹Ö±£¬Ö¤Ã÷ÈçÏ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòA1£¨x1£¬-1£©£¬B1£¨x2£¬-1£©£¬ÓÉÒÑÖª£¬Ö±ÏßABµÄбÂÊk´æÔÚ£¬ÉèÆä·½³ÌΪy=kx+1£¬ÁªÁ¢$\left\{\begin{array}{l}y=kx+1\\{x^2}=4y\end{array}\right.$£¬Í¨¹ý¼ÆËã$\overrightarrow{{A}_{1}F}•\overrightarrow{{B}_{1}F}$µÄÊýÁ¿»ý£¬ÍƳö½á¹û£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö12·Ö£©
½â£¨¢ñ£©ÉèP£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{DM}=2\overrightarrow{DP}$ÖªµãPΪÏß¶ÎDMµÄÖе㣬¹Ê$\left\{\begin{array}{l}{x_0}=\frac{1}{2}x\\{y_0}=y\end{array}\right.$¡­£¨2·Ö£©
ÒòΪµãPÔÚÅ×ÎïÏßx2=yÉÏ£¬¹Ê${x_0}^2={y_0}$£¬´Ó¶ø${£¨\frac{1}{2}x£©^2}=y$¡­£¨4·Ö£©
¼´ÇúÏßCµÄ·½³ÌΪx2=4y¡­£¨5·Ö£©
£¨¢ò£©ÅжϣºÖ±ÏßA1FÓëB1F´¹Ö±£¬¡­£¨6·Ö£©
Ö¤Ã÷ÈçÏ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòA1£¨x1£¬-1£©£¬B1£¨x2£¬-1£©£¬ÓÉÒÑÖª£¬Ö±ÏßABµÄбÂÊk´æÔÚ£¬ÉèÆä·½³ÌΪy=kx+1£®¡­£¨7·Ö£©
ÓÉ$\left\{\begin{array}{l}y=kx+1\\{x^2}=4y\end{array}\right.$µÃ£ºx2-4kx-4=0¡­£¨8·Ö£©
ËùÒÔx1x2=-4£¬¡­£¨9·Ö£©
ÒòΪ $\overrightarrow{{A_1}F}=£¨-{x_1}£¬2£©$£¬$\overrightarrow{{B_1}F}=£¨-{x_2}£¬2£©$£¬¡­£¨10·Ö£©
¹Ê$\overrightarrow{{A_1}F}•\overrightarrow{{B_1}F}={x_1}{x_2}+4=0⇒\overrightarrow{{A_1}F}¡Í\overrightarrow{{B_1}F}$¡­£¨11·Ö£©
ËùÒÔÖ±ÏßA1FÓëB1F´¹Ö±£®¡­£¨12·Ö£©
£¨ÆäËü½â·¨²ÎÕÕ¸ø·Ö£©

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌµÄÇ󷨣¬Ö±ÏßÓëÅ×ÎïÏßµÄλÖùØÏµµÄ×ÛºÏÓ¦Óã¬Ð±ÂʵÄÊýÁ¿»ýÓëÖ±ÏߵĴ¹Ö±¹ØÏµ£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®½«º¯Êýf£¨x£©=$\sqrt{3}$cos£¨2x+$\frac{¦Ð}{3}$£©-1µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»³¤¶È£¬ÔÙÏòÉÏÆ½ÒÆ1¸öµ¥Î»³¤¶È£¬µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬Ôòº¯Êýg£¨x£©¾ßÓÐÐÔÖʢڢۢܣ®£¨ÌîÈëËùÓÐÕýÈ·ÐÔÖʵÄÐòºÅ£©
¢Ù×î´óֵΪ$\sqrt{3}$£¬Í¼Ïó¹ØÓÚÖ±Ïßx=-$\frac{¦Ð}{3}$¶Ô³Æ£»
¢ÚͼÏó¹ØÓÚyÖá¶Ô³Æ£»
¢Û×îСÕýÖÜÆÚΪ¦Ð£»
¢ÜͼÏó¹ØÓڵ㣨$\frac{¦Ð}{4}$£¬0£©¶Ô³Æ£»
¢ÝÔÚ£¨0£¬$\frac{¦Ð}{3}$£©Éϵ¥µ÷µÝ¼õ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®É躯ÊýF£¨x£©=f£¨x£©-$\frac{1}{f£¨x£©}$£¬ÆäÖÐx-log2f£¨x£©=0£¬Ôòº¯ÊýF£¨x£©ÊÇ£¨¡¡¡¡£©
A£®Ææº¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊÇÔöº¯ÊýB£®Ææº¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊǼõº¯Êý
C£®Å¼º¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊÇÔöº¯ÊýD£®Å¼º¯ÊýÇÒÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊǼõº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¹ØÓÚxµÄ²»µÈʽax2+x+b£¾0µÄ½â¼¯Îª£¨1£¬2£©£¬Ôòa+b=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Ö±ÏßlÓëË«ÇúÏßx2-4y2=4ÏཻÓÚA¡¢BÁ½µã£¬ÈôµãP£¨4£¬1£©ÎªÏß¶ÎABµÄÖе㣬ÔòÖ±ÏßlµÄ·½³ÌÊÇx-y-3=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôÖ±Ïßl£ºy=$\sqrt{3}$xÓëÔ²C£ºx2-4x+y2=0ÏཻÓÚA£¬BÁ½µã£¬ÔòÏÒ³¤|AB|=£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{2}$B£®$\sqrt{2}$C£®2D£®2$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÖ±Ïßl¹ýµãP£¨-1£¬2£©£¬ÇÒÇãб½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóÖ±ÏßlµÄÒ»°ãʽ·½³Ì£»
£¨2£©ÇóÖ±ÏßlÓë×ø±êÖáΧ³ÉµÄÈý½ÇÐÎÈÆyÖáÔÚ¿Õ¼äÐýת³ÉµÄ¼¸ºÎÌåµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÁ½µãM£¨-1£¬2£©ÓëN£¨3£¬4£©£¬ÈôµãPÔÚÖ±Ïßl£ºy=xÉÏ£¬Ôò|PM|+|PN|µÄȡֵ¹¹³ÉµÄ¼¯ºÏΪ[$\sqrt{26}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Öйú¹Å´úÃû´Ê¡°Û»Í¯¡±Ô­À´ÊDzݶѵÄÒâ˼£¬¹Å´úÓÃËü×÷Ϊ³¤·½Àą̂£¨ÉÏ¡¢Ïµ×Ãæ¾ùΪ¾ØÐεÄÀą̂£©µÄרÓÃÊõÓ¹ØÓÚ¡°Û»Í¯¡±Ìå»ý¼ÆËãµÄÃèÊö£¬¡¶¾ÅÕÂËãÊõ¡·×¢Ô»£º¡°±¶ÉÏÙó£¬ÏÂÙó´ÓÖ®£¬Òà±¶ÏÂÙó£¬ÉÏÙó´ÓÖ®£¬¸÷ÒÔÆä¹ã³ËÖ®£¬½ÔÁù¶øÒ»£®¡±Æä¼ÆËã·½·¨ÊÇ£º½«Éϵ×ÃæµÄ³¤³Ë¶þ£¬Óëϵ×ÃæµÄ³¤Ïà¼Ó£¬ÔÙÓëÉϵ×ÃæµÄ¿íÏà³Ë£¬½«Ïµ×ÃæµÄ³¤³Ë¶þ£¬ÓëÉϵ×ÃæµÄ³¤Ïà¼Ó£¬ÔÙÓëϵ×ÃæµÄ¿íÏà³Ë£¬°ÑÕâÁ½¸öÊýÖµÏà¼Ó£¬Óë¸ßÏà³Ë£¬ÔÙÈ¡ÆäÁù·ÖÖ®Ò»£¬ÒÀ´ËËã·¨£¬ÏÖÓÐÉÏ¡¢Ïµ×ÃæÎªÏàËÆ¾ØÐεÄÀą̂£¬ÏàËÆ±ÈΪ$\frac{1}{2}$£¬¸ßΪ3£¬ÆäÉϵ×ÃæµÄÖܳ¤Îª6£¬Ôò¸ÃÀą̂µÄÌå»ýµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®14B£®56C£®$\frac{63}{4}$D£®63

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸