精英家教网 > 高中数学 > 题目详情
2.化简方程$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4为有理方程,其结果是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

分析 根据两点之间的距离公式,可得方程$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4表示动点P(x,y)到(1,0)点和(-1,0)点的距离之和为4,即点P的轨迹方程为椭圆,进而得到答案.

解答 解:根据两点之间的距离公式,可得
方程$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4表示动点P(x,y)到(1,0)点和(-1,0)点的距离之和为4,
即点P的轨迹方程为椭圆,且2a=4,2c=2,
故方程$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4对应的有理方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
故答案为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

点评 本题考查的知识点是椭圆的标准方程,正确理解方程$\sqrt{(x-1)^{2}+{y}^{2}}$+$\sqrt{(x+1)^{2}+{y}^{2}}$=4的含义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,2a3-a1a5=0,数列{bn}的通项bn=log4(a2n),Sn=$\frac{n(n-1)}{2}$.n∈N*
(1)求数列{an}与{bn}的通项公式;
(2)数列{an}的前n项和为Tn,求满足不等式Tn<3bn(n∈N*)成立的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,x-2>lg(x+1),命题q:f(x)=$\frac{1}{x}$是偶函数,则下列结论中正确的是(  )
A.p∨q是假命题B.p∧q是真命题C.p∧¬q是真命题D.p∨¬q是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.指出下列各组命题中,p是q的什么条件:在“充分而不必要条件”,“必要而不充分条件”,“充要条件”,“即不充分也不必要条件”中选出一种,为什么?
(1)设x,y是实数,p:x>y,q:|x|>|y|;
(2)p:a∈N,q:a∈Z;
(3)p:D在△ABC的边BC的中线上,q:S△ABD=△ACD
(4)p:2lga=lg(5a-6),q:a=2;
(5)p:小王的学习成绩优秀,q:小王是三好学生.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的顶点与直角坐标系的原点重合,始边在x轴的正半轴上.终边经过点(4,3),现将角α的终边逆时针旋转-个角β后,使其终边经过点Q(3,4),则tanβ=$\frac{7}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,若a3+a4+a5+a6+a7=20,则a5=(  )
A.10B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}中,
(1)a1•a9=64,a3+a7=20,求a11的值.
(2)Sn=189,q=2,an=96,求a1和n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知空间向量$\overrightarrow a=({2,-1,3})$,$\overrightarrow b=({-1,4,-2})$,$\overrightarrow c=({7,0,λ})$,若$\overrightarrow a,\overrightarrow b,\overrightarrow c$三个向量共面,则实数λ=(  )
A.8B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.已知y=f(x)是R上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的必要不充分条件
C.命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0”
D.命题“角α的终边在第一象限角,则α是锐角”的逆否命题为真命题

查看答案和解析>>

同步练习册答案