精英家教网 > 高中数学 > 题目详情
已知A、B、C是△ABC的三个内角,y=cotA+
2sinAcosA+cos(B-C)

(1)若任意交换两个角的位置,y的值是否变化?试证明你的结论.
(2)求y的最小值.
分析:(1)利用诱导公式对y的表达式进行化简整理求得y=cotA+cotB+cotC,进而可推断出任意交换两个角的位置,y的值均不变化.
(2)利用同角三角函数的基本关系和cos(B-C)的范围,可确定y的范围,进而求得y的最小值.
解答:解:(1)∵y=cotA+
2sin[π-(B+C)]
cos[π-(B+C)]+cos(B-C)

=cotA+
2sin(B+C)
-cos(B+C)+cos(B-C)

=cotA+
sinBcosC+cosBsinC
sinBsinC

=cotA+cotB+cotC,
∴任意交换两个角的位置,y的值不变化.

(2)∵cos(B-C)≤1,
∴y≥cotA+
2sinA
1+cosA
=
1-tan2
A
2
2tan
A
2
+2tan
A
2
=
1
2
(cot
A
2
+3tan
A
2
)≥
3tan
A
2
•cot
A
2
=
3

故当A=B=C=
π
3
时,ymin=
3
点评:本题主要考查了三角函数的最值,诱导公式的化简求值,以及同角三角函数的基本关系的应用.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是直线l上的三点,向量
OA
OB
OC
满足
OA
-(y+1-lnx)
OB
+
1-x
ax
OC
=
o
,(O不在直线l上a>0)
(1)求y=f(x)的表达式;
(2)若函数f(x)在[1,∞]上为增函数,求a的范围;
(3)当a=1时,求证lnn>
1
2
+
1
3
+
1
4
+…+
1
n
,对n≥2的正整数n成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是直角三角形的三边,其中c为斜边,若实数M使不等式
1
a
+
1
b
+
1
c
M
a+b+c
恒成立,则实数M的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知A、B、C是锐角△ABC的三个内角,内量p=(1+sinA,1+cosA),q=(1+sinB,-1-cosB),则p与q的夹角是


  1. A.
    锐角
  2. B.
    钝角
  3. C.
    直角
  4. D.
    不确定

查看答案和解析>>

科目:高中数学 来源:0119 期末题 题型:单选题

已知a、b、c是直线,α、β是平面,给出下列五种说法:
①若a⊥b,b⊥c,则a∥c;   ②若a∥b,b⊥c,则a⊥c;
③若a∥β,bβ,则a∥b; ④若a与b异面,且a∥β,则b与β相交;
⑤若a∥c,α∥β,a⊥α,则c⊥β。
其中正确说法的个数是

[     ]

A.4
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案