精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: (a>b>0)左、右焦点分别为F1 , F2 , A(2,0)是椭圆的右顶点,过F2且垂直于x轴的直线交椭圆于P,Q两点,且|PQ|=3;
(1)求椭圆的方程;
(2)若直线l与椭圆交于两点M,N(M,N不同于点A),若 =0, =
①求证:直线l过定点;并求出定点坐标;
②求直线AT的斜率的取值范围.

【答案】
(1)

解:由题意可知:a=2,

令x=c,代入椭圆方程,解得:y= ,则丨PQ丨= =3,

则b=

∴椭圆的标准方程为:


(2)

解:①当直线MN斜率不存在时,设lMN:x=m,

,解得:y= ,则丨MN丨=2

设直线MN与x轴交于点B,丨丨MB=丨AM丨即 =2﹣m,

∴m= 或m=2(舍),

∴直线lMN过定点( ,0);

当直线MN斜率存在时,设直线MN斜率为k,

设M(x1,y1),N(x2,y2),则直线MN:y=kx+b,

与椭圆方程 ,联立,消取y整理得(4k2+3)x2+8kbx+4k2﹣12=0,

∴x1+x2=﹣ ,x1x2=

△>0,k∈R,

=0,(x1﹣2,y1)(x2﹣2,y2)=0,

即x1x2﹣2(x1+x2)+4+y1y2=0,

y1y2=(kx1+b)(kx2+b)=k2x1x2+kb(x1+x2)+b2=

∴7b2+4k2+16kb=0,则b=﹣ k,或b=﹣2k,

∴lMN:y=k(x﹣ )或y=k(x﹣2),

∴直线lMN过定点( ,0)或(2,0);

综合知,直线过定点( ,0);

②T为MN中点,T( ),则T(﹣ ),

∴kAT= =

由b=﹣ ,则kAT=

当k=0时,kAT=0,

当k≠0时,k∈R,kAT= =

由8k+ ≥2 =2

或8k+ ≤﹣2 =﹣2

∴kAT∈[﹣ ],

直线AT的斜率的取值范围为[﹣ ]


【解析】(1)由a=2,则椭圆的通径丨PQ丨= ,代入即可求得b的值,即可取得椭圆的方程;(2)当直线MN斜率不存在时,将x=m代入椭圆方程,则 =2﹣m,即可求得m的值,即可求得直线恒过定点;当斜率存在,设直线方程y=kx+b,代入椭圆方程,由韦达定理,向量的坐标运算,即可求得b=﹣ k,或b=﹣2k,即可求得直线方程,则直线过定点( ,0);(3)利用中点坐标公式求得T坐标,利用直线的斜率公式,kAT= = ,分类当k=0,kAT=0,当k≠0时,利用基本不等式的性质,即可求得直线AT的斜率的取值范围.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.向量 =(a, b)与 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴的交点中相邻两个交点的距离是,当取得最小值

(1)求函数的解析式;

(2)求函数在区间的最大值和最小值;

(3)若函数的零点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x2
(Ⅰ)求函数h(x)=f(x)﹣3x的极值;
(Ⅱ)若函数g(x)=f(x)﹣ax在定义域内为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD﹣A1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN= ,则MN与平面BB1C1C的位置关系为( )

A.相交
B.平行
C.垂直
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且a1=2,an+1=2Sn+2.
(1)求数列{an}的通项公式;
(2)若数列{bn}的各项均为正数,且bn 的等比中项,求bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, 为线段(含端点)上一个动点,设对于函数,给出以下三个结论:

①当时,函数的值域为

②对于任意的,均有

③对于任意的,函数的最大值均为4.

其中所有正确的结论序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为 (t为参数).
(1)求曲线C1的直角坐标方程及直线l的普通方程;
(2)若曲线C2的参数方程为 (α为参数),曲线C1上点P的极角为 ,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.

查看答案和解析>>

同步练习册答案