【题目】如图,在中,AB>AC,H为的垂心,M为边BC的中点,点S在边BC上且满足∠BHM=∠CHS,点A在直线HS上的投影为P.证明:的外接圆与的外接圆相切.
【答案】见解析
【解析】
如图,联结AH并延长,与的外接圆交于点D
作,与的外接圆交于点E.
易知,点D、H关于直线BC对称.
故∠HCB=∠BCD=∠CBE.
则.
因此,AE为外接圆的直径.
又由CH=CD=EB,结合知四边形CHBE为平行四边形.
于是,EH过点M.
设B’、C’为点B、C在边AC、AB上的投影.
延长EH,与的外接圆交于点Q.
由∠AQH=∠AQE=90°=∠APH,得A、Q、B’、H、C’、P六点共圆,且该圆以AH为直径.
由
由
结合,有.
则.
从而,Q、S、D三点共线.
由
得P、Q、S、M四点共圆,设此圆为圆T.
过点O作外接圆的切线.
由,知TQ也为圆T的切线.
故的外接圆与的外接圆相切.
科目:高中数学 来源: 题型:
【题目】第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法错误的是( )
A.第一场得分的中位数为B.第二场得分的平均数为
C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学生学习的自律性很重要.某学校对自律性与学生成绩是否有关进行了调研,从该校学生中随机抽取了100名学生,通过调查统计得到列联表的部分数据如下表:
自律性一般 | 自律性强 | 合计 | |
成绩优秀 | 40 | ||
成绩一般 | 20 | ||
合计 | 50 | 100 |
(1)补全列联表中的数据;
(2)判断是否有的把握认为学生的自律性与学生成绩有关.
参考公式及数据:.
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)已知c>0,关于x的不等式:x+|x-2c|≥2的解集为R.求实数c的取值范围;
(Ⅱ)若c的最小值为m,又p、q、r是正实数,且满足p+q+r=3m,求证:p2+q2+r2≥3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线上一点到焦点的距离,倾斜角为的直线经过焦点,且与抛物线交于两点、.
(1)求抛物线的标准方程及准线方程;
(2)若为锐角,作线段的中垂线交轴于点.证明:为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次数学考试后,对高三文理科学生进行抽样调查,调查其对本次考试的结果满意或不满意,现随机抽取名学生的数据如下表所示:
满意 | 不满意 | 总计 | |
文科 | 22 | 18 | 40 |
理科 | 48 | 12 | 60 |
总计 | 70 | 30 | 100 |
(1)根据数据,有多大的把握认为对考试的结果满意与科别有关;
(2)用分层抽样方法在感觉不满意的学生中随机抽取名,理科生应抽取几人;
(3)在(2)抽取的名学生中任取2名,求文科生人数的期望.(其中)
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆:的左焦点为且离心率为,为椭圆上任意一点,的取值范围为,.
(1)求椭圆的方程;
(2)如图,设圆是圆心在椭圆上且半径为的动圆,过原点作圆的两条切线,分别交椭圆于,两点.是否存在使得直线与直线的斜率之积为定值?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com