精英家教网 > 高中数学 > 题目详情
7.若实数x,y满足条件$\left\{\begin{array}{l}y-x≥0\\ x+y-4≥0\\ x-3y+12≥0\end{array}\right.$,则z=2x+y-1的最大值为17.

分析 作出不等式组对应的平面区域,利用z的几何意义,求出最优解即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=2x+y-1得y=-2x+z-1,
平移直线y=-2x+z-1,
由图象可知当直线y=-2x+z-1经过点A时,直线的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{y=x}\\{x-3y+12=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$,
即A(6,6),此时z=2×6+6-1=17,
故答案为:17

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=x4+2x3+4x2+cx的图象关于直线x=m对称,则f(x)的最小值是-$\frac{11}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,若sinAcosB=sinC,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如表统计数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)6.27.58.08.59.8
根据上表可得回归直线方程$\stackrel{∧}{y}$=a+0.76x,据此估计,若该社区一户家庭年支出为11.8万元,则该家庭的年收入为15万元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=alnx+bx(a,b∈R)在点(1,f(1))处的切线方程为x-2y-2=0.
(1)求a、b的值;
(2)当x≥1时,f(x)+$\frac{k}{x}$<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=asinx在点(0,0)处的切线方程为y=2x,则a=(  )
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在四面体S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,则该四面体外接球的表面积是(  )
A.$8\sqrt{6}π$B.$\sqrt{6}π$C.24πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若y=sin2(x4),则$\frac{dy}{dx}$=4x3sin(2x4);$\frac{{d}^{2}y}{d{x}^{2}}$=12x2sin(2x4)+32x6cos(2x4);$\frac{dy}{d({x}^{2})}$=4x2sin(2x4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线3x+4y+17=0与圆x2+y2-4x+4y-17=0相交于A,B,则|AB|=8.

查看答案和解析>>

同步练习册答案