精英家教网 > 高中数学 > 题目详情
14.已知f(x)为奇函数,当x>0时,f(x)=x2-6x+5,则当x<0时,f(x)=-x2-6x-5.

分析 利用函数的奇偶性直接求解函数的解析式即可.

解答 解:函数f(x)在R上为奇函数,f(-x)=-f(x);
且x>0时,f(x)=x2-6x+5,
则当x<0时,f(x)=-f(-x)=-(x2+6x+5)=-x2-6x-5.
故答案为:-x2-6x-5.

点评 本题考查函数的奇偶性的应用,函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足2|x|-1≤y≤x+1,则z=4x-y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{1}{2}$ax2+(b-1)x+lnx(a>0,b∈R).
(1)当a=2,b=-2时,求函数f(x)的单调区间;
(2)若函数有两个极值点x1和x2,0<x1<2<x2<4求证:b<2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.定义在R上的函数f(x)=|2x+5|+|2x-1|≥a恒成立,
(1)求a的最大值;
(2)若m,n,p是正实数,且满足m+n+p=1,求证:mn+np+mp≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{(4-a)x,x<1}\\{{a}^{x},x≥1}\end{array}\right.$满足对任意的两个不等实数x1,x2都有(x1-x2)[f(x1)-f(x2)]>0成立,则实数a的取值范围是(  )
A.(1,+∞)B.(-∞,4)C.(1,4)D.[2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在数列{an}中,an+1=an+a (n∈N*,a为常数),若平面上的三个不共线的非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足2$\overrightarrow{OC}$=a2$\overrightarrow{OA}$+a2015$\overrightarrow{OB}$,三点A、B、C共线且该直线不过O点,则S2016等于(  )
A.2016B.2017C.1007D.1008

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow{b}$=6,求
(1)($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{b}$;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|log2(x2-3x)<2},B={x|$\frac{x+3}{2-x}$≥0},则A∩B=(  )
A.(-1,0)B.(-1,2)C.(-1,2]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=logax(a>1),在定义域[m,n](n>m)上的值域也为[m,n],则实数a的取值范围为$1<a<{e^{\frac{1}{e}}}$.

查看答案和解析>>

同步练习册答案