| A. | (-1,0) | B. | (-1,2) | C. | (-1,2] | D. | (0,2] |
分析 由对数函数的性质和对数的运算性质求出集合A,由分式不等式的解法求出集合B,由交集的运算求出A∩B.
解答 解:由log2(x2-3x)<2得,log2(x2-3x)<log24,
所以$\left\{\begin{array}{l}{{x}^{2}-3x>0}\\{{x}^{2}-3x<4}\end{array}\right.$,解得-1<x<0或3<x<4,
则集合A=(-1,0)∪(3,4),
由$\frac{x+3}{2-x}≥0$得$\left\{\begin{array}{l}{(x+3)(2-x)≥0}\\{2-x≠0}\end{array}\right.$,解得-3≤x<2,
则集合B=[-3,2),
所以A∩B=[(-1,0)∪(3,4)]∩[-3,0)=(-1,0),
故选A.
点评 本题考查了交集及其运算,分式不等式的解法,以及对数函数的性质和对数的运算性质,考查化简、计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x}{4}$-$\frac{y}{4}$=1 | B. | $\frac{x}{2}$-$\frac{y}{6}$=1 | C. | $\frac{x}{6}$-$\frac{y}{2}$=1 | D. | $\frac{x}{12}$-$\frac{3y}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com