分析 (1)根据函数单调性的定义证明函数的单调性,注意取值、作差、变形和定符号和下结论;
(2)运用函数的单调性,从而求出函数的最值.
解答 解:(1)证明:令3≤x1<x2≤5,
则f(x1)-f(x2)=1-$\frac{3}{{x}_{1}+2}$-(1-$\frac{3}{{x}_{2}+2}$)
=-3($\frac{1}{{x}_{1}+2}$-$\frac{1}{{x}_{2}+2}$)=-3•$\frac{{x}_{2}-{x}_{1}}{({x}_{1}+2)({x}_{2}+2)}$,
∵3≤x1<x2≤5,∴x2-x1>0,(x1+2)(x2+2)>0,
∴f(x1)<f(x2),
故f(x)在[3,5]递增;
(2)由f(x)在[3,5]递增,
可得f(3)取得最小值1-$\frac{3}{5}$=$\frac{2}{5}$;
f(5)取得最大值1-$\frac{3}{7}$=$\frac{4}{7}$.
点评 本题考查了函数的单调性的定义,考查求函数的值域问题,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (-1,2) | C. | (-1,2] | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 10 | C. | -8 | D. | -10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,3) | B. | (0,3) | C. | (0,8) | D. | (-1,8) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com