精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=1-\frac{3}{x+2}$,x∈[3,5].
(1)利用定义证明函数f(x)单调递增;
(2)求函数f(x)的最大值和最小值.

分析 (1)根据函数单调性的定义证明函数的单调性,注意取值、作差、变形和定符号和下结论;
(2)运用函数的单调性,从而求出函数的最值.

解答 解:(1)证明:令3≤x1<x2≤5,
则f(x1)-f(x2)=1-$\frac{3}{{x}_{1}+2}$-(1-$\frac{3}{{x}_{2}+2}$)
=-3($\frac{1}{{x}_{1}+2}$-$\frac{1}{{x}_{2}+2}$)=-3•$\frac{{x}_{2}-{x}_{1}}{({x}_{1}+2)({x}_{2}+2)}$,
∵3≤x1<x2≤5,∴x2-x1>0,(x1+2)(x2+2)>0,
∴f(x1)<f(x2),
故f(x)在[3,5]递增;
(2)由f(x)在[3,5]递增,
可得f(3)取得最小值1-$\frac{3}{5}$=$\frac{2}{5}$;
f(5)取得最大值1-$\frac{3}{7}$=$\frac{4}{7}$.

点评 本题考查了函数的单调性的定义,考查求函数的值域问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设集合A={x|log2(x2-3x)<2},B={x|$\frac{x+3}{2-x}$≥0},则A∩B=(  )
A.(-1,0)B.(-1,2)C.(-1,2]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=logax(a>1),在定义域[m,n](n>m)上的值域也为[m,n],则实数a的取值范围为$1<a<{e^{\frac{1}{e}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=\left\{\begin{array}{l}{x^2}+1,x≥0\\ 1,{\;}^{\;}{\;}^{\;}x<0\end{array}\right.$的值域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.化简${[{(-\frac{1}{27})^{-2}}]^{\frac{1}{3}}}+{log_2}5-{log_2}10$的值得(  )
A.8B.10C.-8D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x||x-1|<2},B={x|log2x<3},则A∩B=(  )
A.(-1,3)B.(0,3)C.(0,8)D.(-1,8)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线x2=4y的焦点F的坐标为(0,1);若M是抛物线上一点,|MF|=5,O为坐标原点,则cos∠MFO=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{{1+a{x^2}}}{x+b}(a≠0)$是奇函数,且函数f(x)的图象过点(1,3).
(1)求实数a,b值;
(2)用定义证明函数f(x)在$(\frac{{\sqrt{2}}}{2},+∞)$上单调递增;
(3)求函数[1,+∞)上f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)的图象如图所示,则函数y=f(6x)的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案