精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=|x-1|-|2x|.
(1)解不等式f(x)>-3;
(2)求函数y=f(x)的图象与x轴围成的三角形的面积.

分析 (1)求出函数的导数,通过讨论x的范围,求出不等式的解集即可;
(2)画出函数f(x)的图象,求出交点的横坐标,求出三角形的面积即可.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{1+x,x≤0}\\{1-3x,0<x<1}\\{-1-x,x≥1}\end{array}\right.$,
∵f(x)>-3,
故x≤0时,由1+x>-3,解得:x>-4即-4<x≤0,
当0<x<1时,由1-3x>-3,解得:x<$\frac{4}{3}$,即0<x<1,
当x≥1时,-1-x>-3,解得:x<2,即1≤x<2,
故不等式的解集是(-4,2);
(2)画出函数f(x)的图象,如图所示:

可得函数f(x)的图象与x轴交点的横坐标分别是-1,$\frac{1}{3}$,
即函数f(x)的图象与x轴围成的三角形面积是$\frac{1}{2}$×$\frac{4}{3}$×1=$\frac{2}{3}$.

点评 本题考查了解绝对值不等式问题,考查数形结合思想以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如果a>b,则下列不等式正确的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.2a>2bC.|a|>|b|D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在三棱柱ABC-A'B'C'中,AA'⊥底面ABC,AB=BC=AA',∠ABC=90°,O是侧面ABB'A'的中心,点D、E、F分别是棱A'C'、AB、BB'的中点.
(1)证明OD∥平面BCC'B';
(2)求直线EF和AC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=2${\;}^{-\frac{1}{3}}$,b=log${\;}_{\frac{1}{4}}$3,c=log25,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.甲、乙两人轮流投篮,每人每次投一球,约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为$\frac{1}{3}$,乙每次投篮投中的概率为$\frac{1}{2}$,且各次投篮互不影响.
(1)求甲获胜的概率;
(2)求投篮结束时甲的投篮次数ξ的分布列
(3)ξ的期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区间[0,2]上分别任取两个数m,n,若向量$\overrightarrow{a}$=(m,n),$\overrightarrow{b}$=(1,1),则|$\overrightarrow{a}-\overrightarrow{b}$|≤1的概率是(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.5张奖券中只有1张能中奖,现分别由5名同学无放回地抽取,若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖奖券的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.从装有3个黑球和3个白球(大小、形状相同)的盒子中随机摸出3个球,用ξ表示摸出的黑球个数,则P(ξ≥2)的值为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知函数$f(x)=\frac{x}{sinx}$求${f^'}(\frac{π}{2})$
(2)求曲线$y=cosx({0≤x≤\frac{3π}{2}})$与x轴以及直线$x=\frac{3π}{2}$所围图形的面积.

查看答案和解析>>

同步练习册答案