精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2﹣(a2﹣a)x﹣2
(1)若当x∈[1,3]时,f(x)为单调函数,求a的取值范围;
(2)求函数f(x)在[2,4]上的最大值g(a);
(3)求g(a)的最大值.

解:(1)∵函数f(x)=x2﹣(a2﹣a)x﹣2的图象是开口方向朝上,
以x=为对称轴的抛物线若当x∈[1,3]时,f(x)为单调函数,
≤1,或≧3
解得a≤﹣2,或﹣1≤a≤2,或a≥3
故a的取值范围为(﹣∞,﹣2]∪[﹣1,2]∪[3,+∞)
(2)当≧3,
即a≤﹣2,或a≧3时,
f(x)在[2,4]上的最大值
g(a)=f(2)=﹣2(a2﹣a)+2;
<3,即﹣2<a<3时,
f(x)在[2,4]上的最大值
g(a)=f(4)=﹣4(a2﹣a)+14;
故g(a)=
(3)由(2)得当a≤﹣2,或a≥3时,
g(a)的最大值为﹣10
当﹣2<a<3时g(a)的最大值为15
故g(a)的最大值为15
练习册系列答案
  • 课时必胜系列答案
  • 小学生每日5分钟口算系列答案
  • 伴你成长课时练系列答案
  • 随堂练习与单元测试系列答案
  • 随堂手册课时作业本系列答案
  • 国华图书复习加考试标准卷系列答案
  • 名校百分金卷系列答案
  • 随堂大考卷系列答案
  • 小学生每日20分钟系列答案
  • 口算题卡加应用题专项沈阳出版社系列答案
  • 年级 高中课程 年级 初中课程
    高一 高一免费课程推荐! 初一 初一免费课程推荐!
    高二 高二免费课程推荐! 初二 初二免费课程推荐!
    高三 高三免费课程推荐! 初三 初三免费课程推荐!
    相关习题

    科目:高中数学 来源: 题型:

    精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
    π
    2
    )的部分图象如图所示,则f(x)的解析式是(  )
    A、f(x)=2sin(πx+
    π
    6
    )(x∈R)
    B、f(x)=2sin(2πx+
    π
    6
    )(x∈R)
    C、f(x)=2sin(πx+
    π
    3
    )(x∈R)
    D、f(x)=2sin(2πx+
    π
    3
    )(x∈R)

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    (2012•深圳一模)已知函数f(x)=
    1
    3
    x3+bx2+cx+d
    ,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
    (1)求f(x);
    (2)设g(x)=x
    f′(x)
     , m>0
    ,求函数g(x)在[0,m]上的最大值;
    (3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

    查看答案和解析>>

    科目:高中数学 来源: 题型:

    (2011•上海模拟)已知函数f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)当a=1,b=2时,求f(x)的最小值;
    (2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
    (3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
    求证:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中数学 来源:上海模拟 题型:解答题

    已知函数f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)当a=1,b=2时,求f(x)的最小值;
    (2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
    (3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
    求证:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中数学 来源:深圳一模 题型:解答题

    已知函数f(x)=
    1
    3
    x3+bx2+cx+d
    ,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
    (1)求f(x);
    (2)设g(x)=x
    f′(x)
     , m>0
    ,求函数g(x)在[0,m]上的最大值;
    (3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

    查看答案和解析>>

    同步练习册答案