精英家教网 > 高中数学 > 题目详情

【题目】一次猜奖游戏中,1,2,3,4四扇门里摆放了 四件奖品(每扇门里仅放一件).甲同学说:1号门里是,3号门里是;乙同学说:2号门里是,3号门里是;丙同学说:4号门里是,2号门里是;丁同学说:4号门里是,3号门里是.如果他们每人都猜对了一半,那么4号门里是( )

A. B. C. D.

【答案】A

【解析】 由题意得,甲同学说:1号门里是,3号门里是乙同学说:2号门里是3号门里是;丙同学说:4号门里是2号门里是;丁同学说:4号门里是,3号门里是 ,若他们每人猜对了一半,则可判断甲同学中1号门中是是正确的;乙同学说的2号门中有是正确的;并同学说的3号门中有是正确的;丁同学说的4号门中有是正确的,则可判断在四扇门中,分别存有 ,所以号门里是,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】三个臭皮匠顶上一个诸葛亮能顶得上吗?在一次有关“三国演义”的知识竞赛中三个臭皮匠ABC能答对题目的概率分别为P(A)P(B)P(C)诸葛亮D能答对题目的概率为P(D)如果将三个臭皮匠ABC组成一组与诸葛亮D比赛答对题目多者为胜方问哪方胜?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求时,求的单调区间;

(2)讨论在定义域上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设P是圆上的动点,点D是P在x轴上的投影,M为线段PD上一点,且

(1)当P在圆上运动时,求点M的轨迹C的方程;

(2)求过点(3,0)且斜率为的直线被轨迹C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了纪念“中国红军长征90周年”,增强学生对“长征精神”的深刻理解,在全校组织了一次有关“长征”的知识竞赛,经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得20分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响,用表示乙队的总得分.

(1)求的分布列和均值;

(2)求甲、乙两队总得分之和等于40分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)求函数的极值;

(3)判断上的单调性,并加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)讨论函数极值点的个数,并说明理由;

(2)若 恒成立,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂需要确定加工某大型零件所花费的时间,连续4天做了4次统计,得到的数据如下:

零件的个数(个)

2

3

4

5

加工的时间(小时)

2.5

3

4

5.5

(1)在直角坐标系中画出以上数据的散点图,求出关于的回归方程,并在坐标系中画出回归直线;

(2)试预测加工10个零件需要多少时间?

参考公式:两个具有线性关系的变量的一组数据:

其回归方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.

(1)求椭圆的方程;

(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案