精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=2lnx-ax+a,a∈R.
(Ⅰ)当a=2时,求f(x)的最大值;
(Ⅱ)当0<x1<x2时,若$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<2($\frac{1}{{x}_{1}}$-1)恒成立,求a的取值范围.

分析 (1)求解导函数f′(x)=$\frac{2}{x}$-2=$\frac{2(1-x)}{x}$,运用不等式结合导数的在单调性得出关系得出f(x)=2lnx-2x+2,
在(0,1)单调递增,(1,+∞)单调递减,判断最大值为f(1).
(2)根据$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$意义与导数有关系,得出f′(x)<2($\frac{1}{x}$-1)求解即可.

解答 解:函数f(x)=2lnx-ax+a,a∈R.
(1)a=2,f(x)=2lnx-2x+2,
f′(x)=$\frac{2}{x}$-2=$\frac{2(1-x)}{x}$,
f′(x)=$\frac{2(1-x)}{x}$=0,x=1,
f′(x)=$\frac{2(1-x)}{x}$>0,0<x<1,
f′(x)=$\frac{2(1-x)}{x}$<0,x>1,
∴f(x)=2lnx-2x+2,在(0,1)单调递增,(1,+∞)单调递减,
故f(x)的最大值为f(1)=2ln1-2=2=0.
(2)∵f(x)=2lnx-ax+a,a∈R.
∴f′(x)=$\frac{2}{x}$-a,
∵当0<x1<x2时,若$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<2($\frac{1}{{x}_{1}}$-1)恒成立,
∴f′(x)<2($\frac{1}{x}$-1),
即$\frac{2}{x}$-a<2($\frac{1}{x}-1$),x>0,
求解得出:a>2,
故a的取值范围:a>2.

点评 本题考查了导数的概念,几何意义,运用导数判断单调性,求解最值,属于导数应用的常规题目,难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设等差数列{an}的前n项和为Sn,若S15=15,则a8的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点列An{n,an}、Bn{n,bn}、Cn{n-1,0},a1=b1=1,$\overrightarrow{{B}_{n}{B}_{n+1}}$=(1,2),$\overrightarrow{{A_n}{A_{n+1}}}∥\overrightarrow{{B_n}{C_n}}$
(Ⅰ)求证数列{bn}为等差数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,若将其图象向右平移$\frac{π}{3}$个单位后得到的图象关于原点对称,则函数f(x)的图象(  )
A.关于直线x=$\frac{π}{12}$对称B.关于直线x=$\frac{5π}{12}$对称
C.关于点($\frac{π}{12}$,0)对称D.关于点($\frac{5π}{12}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求关于x的函数y=(a+sinx)(a+cosx)(a>0)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知,在△ABC中,∠ABC的对边分别为a、b、c,且2cos2$\frac{A}{2}$≥$\frac{b+c}{c}$,则△ABC的形状为直角三角形或钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U=R,A={x|x≤3},B={x|x<2},求:
(1)A∩B;
(2)A∪B;
(3)A∩∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将边长为a的正方形ABCD沿对角线AC折起,使BD=a,则三棱锥D-ABC的体积为(  )
A.$\frac{1}{6}$a3B.$\frac{{\sqrt{2}}}{12}$a3C.$\frac{{\sqrt{3}}}{12}$a3D.$\frac{{\sqrt{3}}}{6}$a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,动圆P过点(-1,0),且与圆E:(x-1)2+y2=16相切,设动圆的圆心P的轨迹方程为C.
(1)求曲线C的方程;
(2)已知点A(1,$\frac{3}{2}$),M、N是曲线C上的两个动点,且直线AM、AN的斜率互为相反数.
①证明直线MN的斜率为定值,并求出这个定值;
②若直线MN不过原点,求△OMN的面积的最大值.

查看答案和解析>>

同步练习册答案