分析 (1)利用方程的根与系数的关系,结合两角和与差的正切函数转化求解即可.
(2)利用已知条件以及余弦定理,转化求解即可.
解答 解:(1)由△≥0得$p≤-\frac{2}{3}$或p≥2,故p≠0,由题有$\left\{\begin{array}{l}tanA+tanB=-\sqrt{3}p\\ tanAtanB=p+1\end{array}\right.,C=π-(A+B)$,
∴$tanC=-tan(A+B)=-\frac{tanA+tanB}{1-tanAtanB}=-\frac{{-\sqrt{3}p}}{1-(p+1)}=-\sqrt{3}$.
又C∈(0,π),∴$C=\frac{2π}{3}$.
(2)∵$c=7,C=\frac{2π}{3}$,∴由余弦定理可得a2+b2+ab=49.
又a+b=8,∴ab=15.
∴$S=\frac{1}{2}absinC=\frac{{15\sqrt{3}}}{4}$.
点评 本题考查两角和与差的正切函数,余弦定理的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 3 | C. | 1 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com