精英家教网 > 高中数学 > 题目详情
18.复数$\frac{1}{1+i}-{i}^{2017}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的代数形式的乘除运算以及复数单位的幂运算化简求解即可.

解答 解:复数$\frac{1}{1+i}-{i}^{2017}$=$\frac{1-i}{(1+i)(1-i)}$-i=$\frac{1}{2}-\frac{3}{2}i$.
复数对应点在第二象限.
故选:B.

点评 本题考查复数的代数形式的混合运算,复数的几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若$\frac{a_1}{1}=\frac{a_2}{2}=\frac{a_3}{3}=\frac{a_4}{4}$=k,则h1+2h2+3h3+4h4=$\frac{2S}{k}$.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若$\frac{S_1}{1}=\frac{S_2}{2}=\frac{S_3}{3}=\frac{S_4}{4}$=K,则H1+2H2+3H3+4H4等于(  )
A.$\frac{V}{2K}$B.$\frac{2V}{K}$C.$\frac{V}{3K}$D.$\frac{3V}{K}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=loga(2+x)+loga(2-x),a>0且a≠1.
(1)求函数f(x)的定义域并判断其奇偶性.
(2)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(  )
A.243B.252C.261D.352

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足an>0,Sn为{an}前n项和,若对一切n∈N*,有a13+a23+…+an3=Sn2
(1)求数列{an}通项公式;
(2)记bn=$\sqrt{{a}_{n}}$(n∈N*),求证:$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<2bn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知a>b,a=5,c=6,sinB=$\frac{3}{5}$,则sin(A+$\frac{π}{2}$)=(  )
A.$\frac{2\sqrt{13}}{13}$B.$\frac{4}{5}$C.$\frac{\sqrt{13}}{65}$D.$\frac{\sqrt{13}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式6-5x-x2≥0的解集为D,在区间[-7,2]上随机取一个数x,则x∈D的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{5}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,已知tanA,tanB是关于x的方程${x^2}+\sqrt{3}px+p+1=0$的两个实根.
(1)求∠C;
(2)若c=7,a+b=8,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C所对的边长分别为a,b,c,若a=$\frac{\sqrt{3}}{2}$b,A=2B,则cosA=-$\frac{5}{8}$.

查看答案和解析>>

同步练习册答案