精英家教网 > 高中数学 > 题目详情
16.在△ABC中,内角A,B,C所对的边长分别为a,b,c,若a=$\frac{\sqrt{3}}{2}$b,A=2B,则cosA=-$\frac{5}{8}$.

分析 由题意利用正弦定理、二倍角公式,求得cosA的值.

解答 解:△ABC中,∵a=$\frac{\sqrt{3}}{2}$b,A=2B,
则由正弦定理可得$\frac{a}{b}$=$\frac{\sqrt{3}}{2}$=$\frac{sinA}{sinB}$=$\frac{sin2B}{sinB}$=2cosB,
∴cosB=$\frac{\sqrt{3}}{4}$∴cosA=cos2B=2cos2B-1=-$\frac{5}{8}$,
故答案为:-$\frac{5}{8}$.

点评 本题主要考查正弦定理的应用、二倍角公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.复数$\frac{1}{1+i}-{i}^{2017}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线x+y+2=0截圆x2+y2=4所得劣弧所对的圆心角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=-2+loga(x+3)(a>0且a≠1),g(x)=($\frac{1}{2}$)x-1
(1)函数y=f(x)的图象恒过定点A,求A点坐标;
(2)若函数F(x)=f(x)-g(x)的图象过点(-1,-5),证明:方程F(x)=0在x∈(1,5)上有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=ln\frac{3x}{2}-\frac{2}{x}$的零点一定位于区间(  )
A.(4,5)B.(3,4)C.(2,3)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某市2010年至2016年新开楼盘的平均销售价格y(单位:千元/平米)的统计数据如表:
年份 2010  20112012  20132014  20152016 
 年份代号x 1 5 6
 销售价格y 3 3.4 3.74.5  4.95.3 
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式:$\sum_{i=1}^{7}{x}_{i}{y}_{i}=137.2$,$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列类比推理正确的是(  )
A.由c(a+b)=ca+cb类比,得到loga(x+y)=logax+logay
B.由(ab)c=a(bc)类比,得到($\overrightarrow{a}•\overrightarrow{b}$)$•\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}•\overrightarrow{c}$)
C.由(a+b)+c=a+(b+c)类比,得到(xy)z=x(yz)
D.由(ab)n=anbn类比,得到(x+y)n=xn+yn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$|\overrightarrow a|=4,\overrightarrow b=(-1,\sqrt{3})$.
(1)若$\overrightarrow a∥\overrightarrow b$,求$\overrightarrow a$的坐标;
(2)若$\overrightarrow a$与$\overrightarrow b$的夹角为120°,求$|\overrightarrow a-\overrightarrow b|$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等差数列{an}中,若a12=0,则有a1+a2+…+an=a1+a2+…+a23-n(n<23,n∈N*)成立,类比上述性质,在等比数列{bn}中,若b8=1,则有b1•b2…bn=b1•b2…b15-n(n<15,且n∈N*)成立.

查看答案和解析>>

同步练习册答案