精英家教网 > 高中数学 > 题目详情
1.某市2010年至2016年新开楼盘的平均销售价格y(单位:千元/平米)的统计数据如表:
年份 2010  20112012  20132014  20152016 
 年份代号x 1 5 6
 销售价格y 3 3.4 3.74.5  4.95.3 
(Ⅰ)求y关于x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式:$\sum_{i=1}^{7}{x}_{i}{y}_{i}=137.2$,$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

分析 (Ⅰ)利用公式求出$\hat{b}$,$\hat{a}$,即可得出结论.
(Ⅱ)利用(Ⅰ)的线性回归方程,代入x=8即可.

解答 解:(Ⅰ)由题所给的数据样本平均数$\overline{x}$=$\frac{1}{7}$(1+2+3+4+5+6+7)=4,
$\overline{y}$=$\frac{1}{7}$(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3.
∴$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{137.2-7×4×4.3}{140-7×{4}^{2}}$=0.5,
$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$=4.4-0.5×4=2.4,
∴y关于x的线性回归方程为:y=0.5x+2.4.
(Ⅱ)由(Ⅰ)可得线性回归方程为y=0.5x+2.4.
∵0.5>0,
故2010年至2016年该市新开楼盘平均销售价格逐年增加
2018年的年份代号x=9,可得y=0.5×9+2.4=6.9(千元).
即预测该市2018年新开楼盘的平均销售价格为每平方6.9千元

点评 本题考查的知识点是线性回归方程,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知a>b,a=5,c=6,sinB=$\frac{3}{5}$,则sin(A+$\frac{π}{2}$)=(  )
A.$\frac{2\sqrt{13}}{13}$B.$\frac{4}{5}$C.$\frac{\sqrt{13}}{65}$D.$\frac{\sqrt{13}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$,B=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,求满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量$\overrightarrow{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}中,若a10-a6=4,a2,a4,a8成等比数列,则a1=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C所对的边长分别为a,b,c,若a=$\frac{\sqrt{3}}{2}$b,A=2B,则cosA=-$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC 中,角A,B,C所对的边分别为a,b,c,若a=2,b=2,cos(A+B)=$\frac{1}{4}$,则c=(  )
A.$\sqrt{10}$B.$\sqrt{15}$C.3D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别为a,b,c,已知a=$\sqrt{3}$,c=$\sqrt{2}$,C=$\frac{π}{4}$,则角B=$\frac{5π}{12}$或$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-2,x≤0}\\{f(x-2)+1,x>0}\end{array}\right.$,则f(2018)=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下面类比推理:(注:下列集合C为复数集)
①由“若2a<2b,则a<b”,可类比推出:“若a2<b2,则a<b”;
②由“(a+b)c=ac+bc(c≠0)”,可类比推出“$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}(c≠0)$”;
③由“当a,b∈R,若a-b=0,则a=b”,可类比推出“当a,b∈C,若a-b=0,则a=b”;
④由“当a,b∈R,若a-b>0,则a>b”,可类比推出“当a,b∈C,若a-b>0,则a>b”.
其中结论正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案