精英家教网 > 高中数学 > 题目详情
如图,在Rt△ABC中,D是斜边AB上一点,且AC=AD,记∠BCD=β,∠ABC=α.
(Ⅰ)求sinα+2sin2β的值; 
(Ⅱ)若BC=CD,求∠CAB的大小.

【答案】分析:(Ⅰ)由直角三角形的两锐角互余及外角性质用α,β表示出∠A和∠ACD,再由AC=AD,利用等边对等角得到一对角相等,进而得出α与β的关系式,用β表示出α,代入所求式子中,利用诱导公式变形,计算后即可得到值;
(Ⅱ)由BC=CD,利用正弦定理列出关系式,利用诱导公式变形后,将第一问得出的α+β=-β,α=-2β代入,利用诱导公式化简,再利用二倍角的余弦函数公式化为关于cosβ的方程,求出方程的解得到cosβ的值,由α和β都为直角三角形的锐角,利用特殊角的三角函数值求出β的度数,即可得到∠CAB的度数.
解答:解:(Ⅰ)由题意知:∠A=-α,∠ACD=-β,
又AC=AD,
∴∠ADC=∠ACD,
∴α+β=-β,即α=-2β,
则sinα+2sin2β=sin(-2β)+1-cos2β=cos2β+1-cos2β=1;
(Ⅱ)由BC=CD及正弦定理知:==
∴sin∠BDC=sin[π-(α+β)]=sin(α+β)=sinα,
由(Ⅰ)知α+2β=,即α+β=-β,α=-2β,
∴sin(-β)=sin(-2β),即cosβ=cos2β=(2cos2β-1),
整理得:2cos2β-cosβ-=0,
解得:cosβ=或cosβ=-(舍去),
∵α,β∈(0,),
∴β=
则∠CAB=
点评:此题考查了正弦定理,诱导公式,二倍角的余弦函数公式,等腰三角形的性质,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2
3
,则AC的长为(  )
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于点P.
(1)若AE=CD,点M为BC的中点,求证:直线MP∥平面EAB
(2)若AE=2,CD=1,求锐二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

8.如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设
DM
DN
=λ,试确定实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步练习册答案