精英家教网 > 高中数学 > 题目详情

【题目】孙子定理是中国古代求解一次同余式组的方法,是数论中一个重要定理,最早可见于中国南北朝时期的数学著作《孙子算经》,年英国来华传教士伟烈亚力将其问题的解法传至欧洲,年英国数学家马西森指出此法符合年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.这个定理讲的是一个关于整除的问题,现有这样一个整除问题:将个整数中能被除余且被除余的数按由小到大的顺序排成一列构成一数列,则此数列的项数是(

A.B.C.D.

【答案】D

【解析】

列举出该数列的前几项,可知该数列为等差数列,求出等差数列的首项和公差,进而可得出数列的通项公式,然后求解满足不等式的正整数的个数,即可得解.

设所求数列为,该数列为

所以,数列为等差数列,且首项为,公差为

所以,

解不等式,即,解得

则满足的正整数的个数为

因此,该数列共有.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知

1)讨论的单调性;

2)已知函数有两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市数学教研室对全市201815000名的高中生的学业水平考试的数学成绩进行调研,随机选取了200名高中生的学业水平考试的数学成绩作为样本进行分析,将结果列成频率分布表如下:

数学成绩

频数

频率

5

0.025

15

0.075

50

0.25

70

0.35

45

0.225

15

0.075

合计

200

1

根据学业水平考试的数学成绩将成绩分为“优秀”、“合格”、“不合格”三个等级,其中成绩大于或等于80分的为“优秀”,成绩小于60分的为“不合格”,其余的成绩为“合格”.

1)根据频率分布表中的数据,估计全市学业水平考试的数学成绩的众数、中位数(精确到0.1);

2)市数学教研员从样本中又随机选取了名高中生的学业水平考试的数学成绩,如果这名高中生的学业水平考试的数学成绩的等级情况恰好与按照三个等级分层抽样所得的结果相同,求的最小值;

3)估计全市2018级高中生学业水平考试“不合格”的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双纽线最早于1694年被瑞士数学家雅各布·伯努利用来描述他所发现的曲线.在平面直角坐标系中,把到定点,距离之积等于)的点的轨迹称为双纽线C.已知点是双纽线C上一点,下列说法中正确的有(

①双纽线C关于原点O中心对称;

③双纽线C上满足的点P有两个; 的最大值为.

A.①②B.①②④C.②③④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某十字路口的花圃中央有一个底面半径为的圆柱形花柱,四周斑马线的内侧连线构成边长为的正方形.因工程需要,测量员将使用仪器沿斑马线的内侧进行测量,其中仪器的移动速度为,仪器的移动速度为.若仪器与仪器的对视光线被花柱阻挡,则称仪器在仪器的“盲区”中.

1)如图,斑马线的内侧连线构成正方形,仪器在点处,仪器上距离点处,试判断仪器是否在仪器的“盲区”中,并说明理由;

2)如图,斑马线的内侧连线构成正方形,仪器从点出发向点移动,同时仪器从点出发向点移动,在这个移动过程中,仪器在仪器的“盲区”中的时长为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为原点,极轴为轴非负半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的直角坐标方程和直线的普通方程;

2)在(1)中,设曲线经过伸缩变换得到曲线,设曲线上任意一点为,当点到直线的距离取最大值时,求此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线为参数).

(1)设相交于两点,求

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有一分鹿问题:今有大夫、不更、簪袅、上造、公士,凡五人,共猎得五鹿.欲以爵次分之,问各得几何.”在这个问题中,大夫、不更、簪袅、上造、公士是古代五个不同爵次的官员,现皇帝将大夫、不更、簪枭、上造、公士这5人分成两组(一组2人,一组3人),派去两地执行公务,则大夫、不更恰好在同一组的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若曲线上点处的切线过点,求函数的单调减区间;

(II)若函数在区间内无零点,求实数的最小值.

查看答案和解析>>

同步练习册答案